File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Molecular, supramolecular, and macromolecular motors and artificial muscles

TitleMolecular, supramolecular, and macromolecular motors and artificial muscles
Authors
Issue Date2009
Citation
MRS Bulletin, 2009, v. 34, n. 9, p. 671-681 How to Cite?
AbstractRecent developments in chemical synthesis, nanoscale assembly, and molecularscale measurements enable the extension of the concept of macroscopic machines to the molecular and supramolecular levels. Molecular machines are capable of performing mechanical movements in response to external stimuli. They offer the potential to couple electrical or other forms of energy to mechanical action at the nano- and molecular scales. Working hierarchically and in concert, they can form actuators referred to as artificial muscles, in analogy to biological systems. We describe the principles behind driven motion and assembly at the molecular scale and recent advances in the field of molecular-level electromechanical machines, molecular motors, and artificial muscles. We discuss the challenges and successes in making these assemblies work cooperatively to function at larger scales.
Persistent Identifierhttp://hdl.handle.net/10722/332901
ISSN
2021 Impact Factor: 4.882
2020 SCImago Journal Rankings: 1.190

 

DC FieldValueLanguage
dc.contributor.authorLi, Dongbo-
dc.contributor.authorPaxton, Walter F.-
dc.contributor.authorBaughman, Ray H.-
dc.contributor.authorHuang, Tony Jun-
dc.contributor.authorStoddart, J. Fraser-
dc.contributor.authorWeiss, Paul S.-
dc.date.accessioned2023-10-06T05:15:12Z-
dc.date.available2023-10-06T05:15:12Z-
dc.date.issued2009-
dc.identifier.citationMRS Bulletin, 2009, v. 34, n. 9, p. 671-681-
dc.identifier.issn0883-7694-
dc.identifier.urihttp://hdl.handle.net/10722/332901-
dc.description.abstractRecent developments in chemical synthesis, nanoscale assembly, and molecularscale measurements enable the extension of the concept of macroscopic machines to the molecular and supramolecular levels. Molecular machines are capable of performing mechanical movements in response to external stimuli. They offer the potential to couple electrical or other forms of energy to mechanical action at the nano- and molecular scales. Working hierarchically and in concert, they can form actuators referred to as artificial muscles, in analogy to biological systems. We describe the principles behind driven motion and assembly at the molecular scale and recent advances in the field of molecular-level electromechanical machines, molecular motors, and artificial muscles. We discuss the challenges and successes in making these assemblies work cooperatively to function at larger scales.-
dc.languageeng-
dc.relation.ispartofMRS Bulletin-
dc.titleMolecular, supramolecular, and macromolecular motors and artificial muscles-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1557/mrs2009.179-
dc.identifier.scopuseid_2-s2.0-70349668911-
dc.identifier.volume34-
dc.identifier.issue9-
dc.identifier.spage671-
dc.identifier.epage681-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats