File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Ex2box: Interdependent modes of binding in a two-nanometer-long synthetic receptor

TitleEx<sup>2</sup>box: Interdependent modes of binding in a two-nanometer-long synthetic receptor
Authors
Issue Date2013
Citation
Journal of the American Chemical Society, 2013, v. 135, n. 34, p. 12736-12746 How to Cite?
AbstractIncorporation of two biphenylene-bridged 4,4′-bipyridinium extended viologen units into a para-phenylene-based cyclophane results in a synthetic receptor that is ∼2 nm long and adopts a box-like geometry. This cyclophane, Ex2Box4+, possesses the ability to form binary and ternary complexes with a myriad of guest molecules ranging from long π-electron-rich polycyclic aromatic hydrocarbons, such as tetracene, tetraphene, and chrysene, to π-electron-poor 2,6-dinitrotoluene, 1,2,4-trichlorobenzene, and both the 9,10- and 1,4-anthraquinone molecules. Moreover, Ex2Box4+ is capable of forming one-to-one complexes with polyether macrocycles that consist of two π-electron-rich dioxynaphthalene units, namely, 1,5-dinaphtho[38]crown-10. This type of broad molecular recognition is possible because the electronic constitution of Ex 2Box4+ is such that the pyridinium rings located at the "ends" of the cyclophane are electron-poor and prefer to enter into donor-acceptor interactions with π-electron-rich guests, while the "middle" of the cyclophane, consisting of the biphenylene spacer, is more electron-rich and can interact with π-electron-poor guests. In some cases, these different modes of binding can act in concert to generate one-to-one complexes which possess high stability constants in organic media. The binding affinity of Ex2Box4+ was investigated in the solid state by way of single-crystal X-ray diffraction and in solution by using UV-vis and NMR spectroscopy for 12 inclusion complexes consisting of the tetracationic cyclophane and the corresponding guests of different sizes, shapes, and electronic compositions. Additionally, density functional theory was carried out to elucidate the relative energetic differences between the different modes of binding of Ex2Box4+ with anthracene, 9,10-anthraquinone, and 1,4-anthraquinone in order to understand the degree with which each mode of binding contributes to the overall encapsulation of each guest. © 2013 American Chemical Society.
Persistent Identifierhttp://hdl.handle.net/10722/333041
ISSN
2021 Impact Factor: 16.383
2020 SCImago Journal Rankings: 7.115
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorJuríček, Michal-
dc.contributor.authorBarnes, Jonathan C.-
dc.contributor.authorDale, Edward J.-
dc.contributor.authorLiu, Wei Guang-
dc.contributor.authorStrutt, Nathan L.-
dc.contributor.authorBruns, Carson J.-
dc.contributor.authorVermeulen, Nicolaas A.-
dc.contributor.authorGhooray, Kala C.-
dc.contributor.authorSarjeant, Amy A.-
dc.contributor.authorStern, Charlotte L.-
dc.contributor.authorBotros, Youssry Y.-
dc.contributor.authorGoddard, William A.-
dc.contributor.authorStoddart, J. Fraser-
dc.date.accessioned2023-10-06T05:16:18Z-
dc.date.available2023-10-06T05:16:18Z-
dc.date.issued2013-
dc.identifier.citationJournal of the American Chemical Society, 2013, v. 135, n. 34, p. 12736-12746-
dc.identifier.issn0002-7863-
dc.identifier.urihttp://hdl.handle.net/10722/333041-
dc.description.abstractIncorporation of two biphenylene-bridged 4,4′-bipyridinium extended viologen units into a para-phenylene-based cyclophane results in a synthetic receptor that is ∼2 nm long and adopts a box-like geometry. This cyclophane, Ex2Box4+, possesses the ability to form binary and ternary complexes with a myriad of guest molecules ranging from long π-electron-rich polycyclic aromatic hydrocarbons, such as tetracene, tetraphene, and chrysene, to π-electron-poor 2,6-dinitrotoluene, 1,2,4-trichlorobenzene, and both the 9,10- and 1,4-anthraquinone molecules. Moreover, Ex2Box4+ is capable of forming one-to-one complexes with polyether macrocycles that consist of two π-electron-rich dioxynaphthalene units, namely, 1,5-dinaphtho[38]crown-10. This type of broad molecular recognition is possible because the electronic constitution of Ex 2Box4+ is such that the pyridinium rings located at the "ends" of the cyclophane are electron-poor and prefer to enter into donor-acceptor interactions with π-electron-rich guests, while the "middle" of the cyclophane, consisting of the biphenylene spacer, is more electron-rich and can interact with π-electron-poor guests. In some cases, these different modes of binding can act in concert to generate one-to-one complexes which possess high stability constants in organic media. The binding affinity of Ex2Box4+ was investigated in the solid state by way of single-crystal X-ray diffraction and in solution by using UV-vis and NMR spectroscopy for 12 inclusion complexes consisting of the tetracationic cyclophane and the corresponding guests of different sizes, shapes, and electronic compositions. Additionally, density functional theory was carried out to elucidate the relative energetic differences between the different modes of binding of Ex2Box4+ with anthracene, 9,10-anthraquinone, and 1,4-anthraquinone in order to understand the degree with which each mode of binding contributes to the overall encapsulation of each guest. © 2013 American Chemical Society.-
dc.languageeng-
dc.relation.ispartofJournal of the American Chemical Society-
dc.titleEx<sup>2</sup>box: Interdependent modes of binding in a two-nanometer-long synthetic receptor-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1021/ja4052763-
dc.identifier.scopuseid_2-s2.0-84883307735-
dc.identifier.volume135-
dc.identifier.issue34-
dc.identifier.spage12736-
dc.identifier.epage12746-
dc.identifier.eissn1520-5126-
dc.identifier.isiWOS:000323876300045-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats