File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1021/jacs.5b10329
- Scopus: eid_2-s2.0-84949571112
- WOS: WOS:000366339900032
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Energy and Electron Transfer Dynamics within a Series of Perylene Diimide/Cyclophane Systems
Title | Energy and Electron Transfer Dynamics within a Series of Perylene Diimide/Cyclophane Systems |
---|---|
Authors | |
Issue Date | 2015 |
Citation | Journal of the American Chemical Society, 2015, v. 137, n. 48, p. 15299-15307 How to Cite? |
Abstract | Artificial photosynthetic systems for solar energy conversion exploit both covalent and supramolecular chemistry to produce favorable arrangements of light-harvesting and redox-active chromophores in space. An understanding of the interplay between key processes for photosynthesis, namely light-harvesting, energy transfer, and photoinduced charge separation and the design of novel, self-assembling components capable of these processes are imperative for the realization of multifunctional integrated systems. We report our investigations on the potential of extended tetracationic cyclophane/perylene diimide systems as components for artificial photosynthetic applications. We show how the selection of appropriate heterocycles, as extending units, allows for tuning of the electron accumulation and photophysical properties of the extended tetracationic cyclophanes. Spectroscopic techniques confirm energy transfer between the extended tetracationic cyclophanes and perylene diimide is ultrafast and quantitative, while the heterocycle specifically influences the energy transfer related parameters and the acceptor excited state. |
Persistent Identifier | http://hdl.handle.net/10722/333147 |
ISSN | 2023 Impact Factor: 14.4 2023 SCImago Journal Rankings: 5.489 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ryan, Seán T.J. | - |
dc.contributor.author | Young, Ryan M. | - |
dc.contributor.author | Henkelis, James J. | - |
dc.contributor.author | Hafezi, Nema | - |
dc.contributor.author | Vermeulen, Nicolaas A. | - |
dc.contributor.author | Hennig, Andreas | - |
dc.contributor.author | Dale, Edward J. | - |
dc.contributor.author | Wu, Yilei | - |
dc.contributor.author | Krzyaniak, Matthew D. | - |
dc.contributor.author | Fox, Athan | - |
dc.contributor.author | Nau, Werner M. | - |
dc.contributor.author | Wasielewski, Michael R. | - |
dc.contributor.author | Stoddart, J. Fraser | - |
dc.contributor.author | Scherman, Oren A. | - |
dc.date.accessioned | 2023-10-06T05:17:04Z | - |
dc.date.available | 2023-10-06T05:17:04Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Journal of the American Chemical Society, 2015, v. 137, n. 48, p. 15299-15307 | - |
dc.identifier.issn | 0002-7863 | - |
dc.identifier.uri | http://hdl.handle.net/10722/333147 | - |
dc.description.abstract | Artificial photosynthetic systems for solar energy conversion exploit both covalent and supramolecular chemistry to produce favorable arrangements of light-harvesting and redox-active chromophores in space. An understanding of the interplay between key processes for photosynthesis, namely light-harvesting, energy transfer, and photoinduced charge separation and the design of novel, self-assembling components capable of these processes are imperative for the realization of multifunctional integrated systems. We report our investigations on the potential of extended tetracationic cyclophane/perylene diimide systems as components for artificial photosynthetic applications. We show how the selection of appropriate heterocycles, as extending units, allows for tuning of the electron accumulation and photophysical properties of the extended tetracationic cyclophanes. Spectroscopic techniques confirm energy transfer between the extended tetracationic cyclophanes and perylene diimide is ultrafast and quantitative, while the heterocycle specifically influences the energy transfer related parameters and the acceptor excited state. | - |
dc.language | eng | - |
dc.relation.ispartof | Journal of the American Chemical Society | - |
dc.title | Energy and Electron Transfer Dynamics within a Series of Perylene Diimide/Cyclophane Systems | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1021/jacs.5b10329 | - |
dc.identifier.scopus | eid_2-s2.0-84949571112 | - |
dc.identifier.volume | 137 | - |
dc.identifier.issue | 48 | - |
dc.identifier.spage | 15299 | - |
dc.identifier.epage | 15307 | - |
dc.identifier.eissn | 1520-5126 | - |
dc.identifier.isi | WOS:000366339900032 | - |