File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State

TitleDiscrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State
Authors
Issue Date2019
Citation
Journal of the American Chemical Society, 2019, v. 141, n. 3, p. 1290-1303 How to Cite?
AbstractThe development of rigid covalent chiroptical organic materials, with multiple, readily available redox states, which exhibit high photoluminescence, is of particular importance in relation to both organic electronics and photonics. The chemically stable, thermally robust, and redox-active perylene diimide (PDI) fluorophores have received ever-increasing attention owing to their excellent fluorescence quantum yields in solution. Planar PDI derivatives, however, generally suffer from aggregation-caused emission quenching in the solid state. Herein, we report on the design and synthesis of two chiral isosceles triangles, wherein one PDI fluorophore and two pyromellitic diimide (PMDI) or naphthalene diimide (NDI) units are arranged in a rigid cyclic triangular geometry. The optical, electronic, and magnetic properties of the rigid isosceles triangles are fully characterized by a combination of optical spectroscopies, X-ray diffraction (XRD), cyclic voltammetry, and computational modeling techniques. Single-crystal XRD analysis shows that both isosceles triangles form discrete, nearly cofacial PDI-PDI π-dimers in the solid state. While the triangles exhibit fluorescence quantum yields of almost unity in solution, the dimers in the solid state exhibit very weak - yet at least an order of magnitude higher - excimer fluorescence yield in comparison with the almost completely quenched fluorescence of a reference PDI. The triangle containing both NDI and PDI subunits shows superior intramolecular energy transfer from the lowest excited singlet state of the NDI to that of the PDI subunit. Cyclic voltammetry suggests that both isosceles triangles exhibit multiple, easily accessible, and reversible redox states. Applications beckon in arenas related to molecular optoelectronic devices.
Persistent Identifierhttp://hdl.handle.net/10722/333359
ISSN
2023 Impact Factor: 14.4
2023 SCImago Journal Rankings: 5.489
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorMohan Nalluri, Siva Krishna-
dc.contributor.authorZhou, Jiawang-
dc.contributor.authorCheng, Tao-
dc.contributor.authorLiu, Zhichang-
dc.contributor.authorNguyen, Minh T.-
dc.contributor.authorChen, Tianyang-
dc.contributor.authorPatel, Hasmukh A.-
dc.contributor.authorKrzyaniak, Matthew D.-
dc.contributor.authorGoddard, William A.-
dc.contributor.authorWasielewski, Michael R.-
dc.contributor.authorStoddart, J. Fraser-
dc.date.accessioned2023-10-06T05:18:44Z-
dc.date.available2023-10-06T05:18:44Z-
dc.date.issued2019-
dc.identifier.citationJournal of the American Chemical Society, 2019, v. 141, n. 3, p. 1290-1303-
dc.identifier.issn0002-7863-
dc.identifier.urihttp://hdl.handle.net/10722/333359-
dc.description.abstractThe development of rigid covalent chiroptical organic materials, with multiple, readily available redox states, which exhibit high photoluminescence, is of particular importance in relation to both organic electronics and photonics. The chemically stable, thermally robust, and redox-active perylene diimide (PDI) fluorophores have received ever-increasing attention owing to their excellent fluorescence quantum yields in solution. Planar PDI derivatives, however, generally suffer from aggregation-caused emission quenching in the solid state. Herein, we report on the design and synthesis of two chiral isosceles triangles, wherein one PDI fluorophore and two pyromellitic diimide (PMDI) or naphthalene diimide (NDI) units are arranged in a rigid cyclic triangular geometry. The optical, electronic, and magnetic properties of the rigid isosceles triangles are fully characterized by a combination of optical spectroscopies, X-ray diffraction (XRD), cyclic voltammetry, and computational modeling techniques. Single-crystal XRD analysis shows that both isosceles triangles form discrete, nearly cofacial PDI-PDI π-dimers in the solid state. While the triangles exhibit fluorescence quantum yields of almost unity in solution, the dimers in the solid state exhibit very weak - yet at least an order of magnitude higher - excimer fluorescence yield in comparison with the almost completely quenched fluorescence of a reference PDI. The triangle containing both NDI and PDI subunits shows superior intramolecular energy transfer from the lowest excited singlet state of the NDI to that of the PDI subunit. Cyclic voltammetry suggests that both isosceles triangles exhibit multiple, easily accessible, and reversible redox states. Applications beckon in arenas related to molecular optoelectronic devices.-
dc.languageeng-
dc.relation.ispartofJournal of the American Chemical Society-
dc.titleDiscrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1021/jacs.8b11201-
dc.identifier.pmid30537816-
dc.identifier.scopuseid_2-s2.0-85059975529-
dc.identifier.volume141-
dc.identifier.issue3-
dc.identifier.spage1290-
dc.identifier.epage1303-
dc.identifier.eissn1520-5126-
dc.identifier.isiWOS:000457067200017-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats