File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Combining Intra- And Intermolecular Charge Transfer with Polycationic Cyclophanes to Design 2D Tessellations

TitleCombining Intra- And Intermolecular Charge Transfer with Polycationic Cyclophanes to Design 2D Tessellations
Authors
Issue Date2019
Citation
Journal of the American Chemical Society, 2019, v. 141, n. 47, p. 18727-18739 How to Cite?
AbstractA series of donor-acceptor (D-A) naphthalene-viologen-based cyclophanes of different shapes, sizes, and symmetries have been synthesized and characterized. Solution optical studies on these cyclophanes reveal the existence of photoinduced intramolecular charge transfer (CT) at 465 nm from naphthalene (D) to viologen (A) units, resulting in a conformational change in the viologen units and the emergence of an emission at 540 nm. The D-A cyclophanes with box-like and hexagon-like shapes offer an opportunity to control the arrangement within 2D layers where D-A interactions direct the superstructures. While a box-like 2,6-disubstituted naphthalene-based tetracationic cyclophane does not form square tiling patterns, a truncated hexagon-like congener self-assembles to form a hexagonal superstructure which, in turn, adopts a hexagonal tiling pattern. Tessellation of the more rigid and highly symmetrical 2,7-disubstituted naphthalene-based cyclophanes leads to the formation of 2D square and honeycomb tiling patterns with the box-like and hexagon-like cyclophanes, respectively. Co-crystallization of the box-like cyclophanes with tetrathiafulvalene (TTF) results in the formation of D-A CT interactions between TTF and viologen units, leading to tubular superstructures. Co-crystallization of the hexagon-like cyclophane with TTF generates well-ordered and uniform tubular superstructures in which the TTF-viologen CT interactions and naphthalene-naphthalene [π···π] interactions propagate with 2D topology. In the solid state, the TTF-cyclophane co-crystals are paramagnetic and display dual intra- and intermolecular CT behavior at ∼470 and ∼1000 nm, respectively, offering multi-responsive materials with potential pathways for electron transport.
Persistent Identifierhttp://hdl.handle.net/10722/333398
ISSN
2021 Impact Factor: 16.383
2020 SCImago Journal Rankings: 7.115
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorCetin, M. Mustafa-
dc.contributor.authorBeldjoudi, Yassine-
dc.contributor.authorRoy, Indranil-
dc.contributor.authorAnamimoghadam, Ommid-
dc.contributor.authorBae, Youn Jue-
dc.contributor.authorYoung, Ryan M.-
dc.contributor.authorKrzyaniak, Matthew D.-
dc.contributor.authorStern, Charlotte L.-
dc.contributor.authorPhilp, Douglas-
dc.contributor.authorAlsubaie, Fehaid M.-
dc.contributor.authorWasielewski, Michael R.-
dc.contributor.authorStoddart, J. Fraser-
dc.date.accessioned2023-10-06T05:19:03Z-
dc.date.available2023-10-06T05:19:03Z-
dc.date.issued2019-
dc.identifier.citationJournal of the American Chemical Society, 2019, v. 141, n. 47, p. 18727-18739-
dc.identifier.issn0002-7863-
dc.identifier.urihttp://hdl.handle.net/10722/333398-
dc.description.abstractA series of donor-acceptor (D-A) naphthalene-viologen-based cyclophanes of different shapes, sizes, and symmetries have been synthesized and characterized. Solution optical studies on these cyclophanes reveal the existence of photoinduced intramolecular charge transfer (CT) at 465 nm from naphthalene (D) to viologen (A) units, resulting in a conformational change in the viologen units and the emergence of an emission at 540 nm. The D-A cyclophanes with box-like and hexagon-like shapes offer an opportunity to control the arrangement within 2D layers where D-A interactions direct the superstructures. While a box-like 2,6-disubstituted naphthalene-based tetracationic cyclophane does not form square tiling patterns, a truncated hexagon-like congener self-assembles to form a hexagonal superstructure which, in turn, adopts a hexagonal tiling pattern. Tessellation of the more rigid and highly symmetrical 2,7-disubstituted naphthalene-based cyclophanes leads to the formation of 2D square and honeycomb tiling patterns with the box-like and hexagon-like cyclophanes, respectively. Co-crystallization of the box-like cyclophanes with tetrathiafulvalene (TTF) results in the formation of D-A CT interactions between TTF and viologen units, leading to tubular superstructures. Co-crystallization of the hexagon-like cyclophane with TTF generates well-ordered and uniform tubular superstructures in which the TTF-viologen CT interactions and naphthalene-naphthalene [π···π] interactions propagate with 2D topology. In the solid state, the TTF-cyclophane co-crystals are paramagnetic and display dual intra- and intermolecular CT behavior at ∼470 and ∼1000 nm, respectively, offering multi-responsive materials with potential pathways for electron transport.-
dc.languageeng-
dc.relation.ispartofJournal of the American Chemical Society-
dc.titleCombining Intra- And Intermolecular Charge Transfer with Polycationic Cyclophanes to Design 2D Tessellations-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1021/jacs.9b07877-
dc.identifier.pmid31580664-
dc.identifier.scopuseid_2-s2.0-85075432539-
dc.identifier.volume141-
dc.identifier.issue47-
dc.identifier.spage18727-
dc.identifier.epage18739-
dc.identifier.eissn1520-5126-
dc.identifier.isiWOS:000500418700012-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats