File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1063/1.4914852
- Scopus: eid_2-s2.0-84929999801
- WOS: WOS:000355794300053
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Comparison of formulas for resonant interactions between energetic electrons and oblique whistler-mode waves
Title | Comparison of formulas for resonant interactions between energetic electrons and oblique whistler-mode waves |
---|---|
Authors | |
Issue Date | 2015 |
Citation | Physics of Plasmas, 2015, v. 22, n. 5, article no. 052902 How to Cite? |
Abstract | Test particle simulation is a useful method for studying both linear and nonlinear wave-particle interactions in the magnetosphere. The gyro-averaged equations of particle motion for first-order and other cyclotron harmonic resonances with oblique whistler-mode waves were first derived by Bell [J. Geophys. Res. 89, 905 (1984)] and the most recent relativistic form was given by Ginet and Albert [Phys. Fluids B 3, 2994 (1991)], and Bortnik [Ph.D. thesis (Stanford University, 2004), p. 40]. However, recently we found there was a (- 1) l - 1 term difference between their formulas of perpendicular motion for the lth-order resonance. This article presents the detailed derivation process of the generalized resonance formulas, and suggests a check of the signs for self-consistency, which is independent of the choice of conventions, that is, the energy variation equation resulting from the momentum equations should not contain any wave magnetic components, simply because the magnetic field does not contribute to changes of particle energy. In addition, we show that the wave centripetal force, which was considered small and was neglect in previous studies of nonlinear interactions, has a profound time derivative and can significantly enhance electron phase trapping especially in high frequency waves. This force can also bounce the low pitch angle particles out of the loss cone. We justify both the sign problem and the missing wave centripetal force by demonstrating wave-particle interaction examples, and comparing the gyro-averaged particle motion to the full particle motion under the Lorentz force. |
Persistent Identifier | http://hdl.handle.net/10722/334389 |
ISSN | 2023 Impact Factor: 2.0 2023 SCImago Journal Rankings: 0.708 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Jinxing | - |
dc.contributor.author | Bortnik, Jacob | - |
dc.contributor.author | Xie, Lun | - |
dc.contributor.author | Pu, Zuyin | - |
dc.contributor.author | Chen, Lunjin | - |
dc.contributor.author | Ni, Binbin | - |
dc.contributor.author | Tao, Xin | - |
dc.contributor.author | Thorne, Richard M. | - |
dc.contributor.author | Fu, Suiyan | - |
dc.contributor.author | Yao, Zhonghua | - |
dc.contributor.author | Guo, Ruilong | - |
dc.date.accessioned | 2023-10-20T06:47:48Z | - |
dc.date.available | 2023-10-20T06:47:48Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Physics of Plasmas, 2015, v. 22, n. 5, article no. 052902 | - |
dc.identifier.issn | 1070-664X | - |
dc.identifier.uri | http://hdl.handle.net/10722/334389 | - |
dc.description.abstract | Test particle simulation is a useful method for studying both linear and nonlinear wave-particle interactions in the magnetosphere. The gyro-averaged equations of particle motion for first-order and other cyclotron harmonic resonances with oblique whistler-mode waves were first derived by Bell [J. Geophys. Res. 89, 905 (1984)] and the most recent relativistic form was given by Ginet and Albert [Phys. Fluids B 3, 2994 (1991)], and Bortnik [Ph.D. thesis (Stanford University, 2004), p. 40]. However, recently we found there was a (- 1) l - 1 term difference between their formulas of perpendicular motion for the lth-order resonance. This article presents the detailed derivation process of the generalized resonance formulas, and suggests a check of the signs for self-consistency, which is independent of the choice of conventions, that is, the energy variation equation resulting from the momentum equations should not contain any wave magnetic components, simply because the magnetic field does not contribute to changes of particle energy. In addition, we show that the wave centripetal force, which was considered small and was neglect in previous studies of nonlinear interactions, has a profound time derivative and can significantly enhance electron phase trapping especially in high frequency waves. This force can also bounce the low pitch angle particles out of the loss cone. We justify both the sign problem and the missing wave centripetal force by demonstrating wave-particle interaction examples, and comparing the gyro-averaged particle motion to the full particle motion under the Lorentz force. | - |
dc.language | eng | - |
dc.relation.ispartof | Physics of Plasmas | - |
dc.title | Comparison of formulas for resonant interactions between energetic electrons and oblique whistler-mode waves | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1063/1.4914852 | - |
dc.identifier.scopus | eid_2-s2.0-84929999801 | - |
dc.identifier.volume | 22 | - |
dc.identifier.issue | 5 | - |
dc.identifier.spage | article no. 052902 | - |
dc.identifier.epage | article no. 052902 | - |
dc.identifier.eissn | 1089-7674 | - |
dc.identifier.isi | WOS:000355794300053 | - |