File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Concurrent Observations Of Magnetic Reconnection From Cluster, IMAGE and SuperDARN: A Comparison Of Reconnection Rates And Energy Conversion

TitleConcurrent Observations Of Magnetic Reconnection From Cluster, IMAGE and SuperDARN: A Comparison Of Reconnection Rates And Energy Conversion
Authors
KeywordsAurora
Dissipation
Energy
Magnetic Reconnection
Power
Reconnection Rates
Issue Date2020
Citation
Journal of Geophysical Research: Space Physics, 2020, v. 125, n. 4, article no. e2019JA027264 How to Cite?
AbstractAuroral emissions reflect energy dissipation in the atmosphere, while the energy mostly originates from the magnetospheric dynamics of the planet. In the Earth's magnetosphere, the interaction between the solar wind and the terrestrial magnetic field produces magnetic reconnection ultimately causing the appearance of auroras in the polar regions. In this study, we revisit two reconnection events previously identified using ESA Cluster observations during conditions of moderate geomagnetic activity, in the magnetotail. We compare these in situ detections with simultaneous global auroral images from the NASA-IMAGE satellite and ionospheric convection measurements from SuperDARN. We show for the first time a direct correspondence between the electric voltage estimated at ionospheric altitude and the reconnection rate at the reconnection site. We compute the total auroral precipitation power and compare it to the energy released from the reconnection site. We deduce that the precipitated electron power of the aurora and the electron energy deposition rate from the reconnection site are of the same order of magnitude, which means that the thermal energy released by reconnection is primarily transferred to the ionosphere and contributes to the auroral activity.
Persistent Identifierhttp://hdl.handle.net/10722/334656
ISSN
2023 Impact Factor: 2.6
2023 SCImago Journal Rankings: 0.845
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorMatar, J.-
dc.contributor.authorHubert, B.-
dc.contributor.authorYao, Z.-
dc.contributor.authorGuo, R.-
dc.contributor.authorCowley, S. W.H.-
dc.contributor.authorMilan, S. E.-
dc.contributor.authorGurgiolo, C.-
dc.date.accessioned2023-10-20T06:49:42Z-
dc.date.available2023-10-20T06:49:42Z-
dc.date.issued2020-
dc.identifier.citationJournal of Geophysical Research: Space Physics, 2020, v. 125, n. 4, article no. e2019JA027264-
dc.identifier.issn2169-9380-
dc.identifier.urihttp://hdl.handle.net/10722/334656-
dc.description.abstractAuroral emissions reflect energy dissipation in the atmosphere, while the energy mostly originates from the magnetospheric dynamics of the planet. In the Earth's magnetosphere, the interaction between the solar wind and the terrestrial magnetic field produces magnetic reconnection ultimately causing the appearance of auroras in the polar regions. In this study, we revisit two reconnection events previously identified using ESA Cluster observations during conditions of moderate geomagnetic activity, in the magnetotail. We compare these in situ detections with simultaneous global auroral images from the NASA-IMAGE satellite and ionospheric convection measurements from SuperDARN. We show for the first time a direct correspondence between the electric voltage estimated at ionospheric altitude and the reconnection rate at the reconnection site. We compute the total auroral precipitation power and compare it to the energy released from the reconnection site. We deduce that the precipitated electron power of the aurora and the electron energy deposition rate from the reconnection site are of the same order of magnitude, which means that the thermal energy released by reconnection is primarily transferred to the ionosphere and contributes to the auroral activity.-
dc.languageeng-
dc.relation.ispartofJournal of Geophysical Research: Space Physics-
dc.subjectAurora-
dc.subjectDissipation-
dc.subjectEnergy-
dc.subjectMagnetic Reconnection-
dc.subjectPower-
dc.subjectReconnection Rates-
dc.titleConcurrent Observations Of Magnetic Reconnection From Cluster, IMAGE and SuperDARN: A Comparison Of Reconnection Rates And Energy Conversion-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1029/2019JA027264-
dc.identifier.scopuseid_2-s2.0-85083961721-
dc.identifier.volume125-
dc.identifier.issue4-
dc.identifier.spagearticle no. e2019JA027264-
dc.identifier.epagearticle no. e2019JA027264-
dc.identifier.eissn2169-9402-
dc.identifier.isiWOS:000536831100037-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats