File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1038/s41746-020-0262-2
- Scopus: eid_2-s2.0-85087054864
- WOS: WOS:000524613600001
Supplementary
- Citations:
- Appears in Collections:
Article: The need for a system view to regulate artificial intelligence/machine learning-based software as medical device
Title | The need for a system view to regulate artificial intelligence/machine learning-based software as medical device |
---|---|
Authors | |
Issue Date | 2020 |
Citation | npj Digital Medicine, 2020, v. 3, n. 1, article no. 53 How to Cite? |
Abstract | Artificial intelligence (AI) and Machine learning (ML) systems in medicine are poised to significantly improve health care, for example, by offering earlier diagnoses of diseases or recommending optimally individualized treatment plans. However, the emergence of AI/ML in medicine also creates challenges, which regulators must pay attention to. Which medical AI/ML-based products should be reviewed by regulators? What evidence should be required to permit marketing for AI/ML-based software as a medical device (SaMD)? How can we ensure the safety and effectiveness of AI/ML-based SaMD that may change over time as they are applied to new data? The U.S. Food and Drug Administration (FDA), for example, has recently proposed a discussion paper to address some of these issues. But it misses an important point: we argue that regulators like the FDA need to widen their scope from evaluating medical AI/ML-based products to assessing systems. This shift in perspective—from a product view to a system view—is central to maximizing the safety and efficacy of AI/ML in health care, but it also poses significant challenges for agencies like the FDA who are used to regulating products, not systems. We offer several suggestions for regulators to make this challenging but important transition. |
Persistent Identifier | http://hdl.handle.net/10722/334666 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gerke, Sara | - |
dc.contributor.author | Babic, Boris | - |
dc.contributor.author | Evgeniou, Theodoros | - |
dc.contributor.author | Cohen, I. Glenn | - |
dc.date.accessioned | 2023-10-20T06:49:46Z | - |
dc.date.available | 2023-10-20T06:49:46Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | npj Digital Medicine, 2020, v. 3, n. 1, article no. 53 | - |
dc.identifier.uri | http://hdl.handle.net/10722/334666 | - |
dc.description.abstract | Artificial intelligence (AI) and Machine learning (ML) systems in medicine are poised to significantly improve health care, for example, by offering earlier diagnoses of diseases or recommending optimally individualized treatment plans. However, the emergence of AI/ML in medicine also creates challenges, which regulators must pay attention to. Which medical AI/ML-based products should be reviewed by regulators? What evidence should be required to permit marketing for AI/ML-based software as a medical device (SaMD)? How can we ensure the safety and effectiveness of AI/ML-based SaMD that may change over time as they are applied to new data? The U.S. Food and Drug Administration (FDA), for example, has recently proposed a discussion paper to address some of these issues. But it misses an important point: we argue that regulators like the FDA need to widen their scope from evaluating medical AI/ML-based products to assessing systems. This shift in perspective—from a product view to a system view—is central to maximizing the safety and efficacy of AI/ML in health care, but it also poses significant challenges for agencies like the FDA who are used to regulating products, not systems. We offer several suggestions for regulators to make this challenging but important transition. | - |
dc.language | eng | - |
dc.relation.ispartof | npj Digital Medicine | - |
dc.title | The need for a system view to regulate artificial intelligence/machine learning-based software as medical device | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1038/s41746-020-0262-2 | - |
dc.identifier.scopus | eid_2-s2.0-85087054864 | - |
dc.identifier.volume | 3 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | article no. 53 | - |
dc.identifier.epage | article no. 53 | - |
dc.identifier.eissn | 2398-6352 | - |
dc.identifier.isi | WOS:000524613600001 | - |