File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1126/sciadv.abf0851
- Scopus: eid_2-s2.0-85110173583
- PMID: 34244139
- WOS: WOS:000672817500004
Supplementary
- Citations:
- Appears in Collections:
Article: Revealing the source of Jupiter's x-ray auroral flares
Title | Revealing the source of Jupiter's x-ray auroral flares |
---|---|
Authors | Yao, ZhonghuaDunn, William R.Woodfield, Emma E.Clark, GeorgeMauk, Barry H.Ebert, Robert W.Grodent, DenisBonfond, BertrandPan, DongxiaoRae, I. JonathanNi, BinbinGuo, RuilongBranduardi-Raymont, GraziellaWibisono, Affelia D.Rodriguez, PedroKotsiaros, StavrosNess, Jan UweAllegrini, FredericKurth, William S.Gladstone, G. RandallKraft, RalphSulaiman, Ali H.Manners, HarryDesai, Ravindra T.Bolton, Scott J. |
Issue Date | 2021 |
Citation | Science Advances, 2021, v. 7, n. 28, article no. eabf0851 How to Cite? |
Abstract | Jupiter's rapidly rotating, strong magnetic field provides a natural laboratory that is key to understanding the dynamics of high-energy plasmas. Spectacular auroral x-ray flares are diagnostic of the most energetic processes governing magnetospheres but seemingly unique to Jupiter. Since their discovery 40 years ago, the processes that produce Jupiter's x-ray flares have remained unknown. Here, we report simultaneous in situ satellite and space-based telescope observations that reveal the processes that produce Jupiter's x-ray flares, showing surprising similarities to terrestrial ion aurora. Planetary-scale electromagnetic waves are observed to modulate electromagnetic ion cyclotron waves, periodically causing heavy ions to precipitate and produce Jupiter's x-ray pulses. Our findings show that ion aurorae share common mechanisms across planetary systems, despite temporal, spatial, and energetic scales varying by orders of magnitude. |
Persistent Identifier | http://hdl.handle.net/10722/334769 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yao, Zhonghua | - |
dc.contributor.author | Dunn, William R. | - |
dc.contributor.author | Woodfield, Emma E. | - |
dc.contributor.author | Clark, George | - |
dc.contributor.author | Mauk, Barry H. | - |
dc.contributor.author | Ebert, Robert W. | - |
dc.contributor.author | Grodent, Denis | - |
dc.contributor.author | Bonfond, Bertrand | - |
dc.contributor.author | Pan, Dongxiao | - |
dc.contributor.author | Rae, I. Jonathan | - |
dc.contributor.author | Ni, Binbin | - |
dc.contributor.author | Guo, Ruilong | - |
dc.contributor.author | Branduardi-Raymont, Graziella | - |
dc.contributor.author | Wibisono, Affelia D. | - |
dc.contributor.author | Rodriguez, Pedro | - |
dc.contributor.author | Kotsiaros, Stavros | - |
dc.contributor.author | Ness, Jan Uwe | - |
dc.contributor.author | Allegrini, Frederic | - |
dc.contributor.author | Kurth, William S. | - |
dc.contributor.author | Gladstone, G. Randall | - |
dc.contributor.author | Kraft, Ralph | - |
dc.contributor.author | Sulaiman, Ali H. | - |
dc.contributor.author | Manners, Harry | - |
dc.contributor.author | Desai, Ravindra T. | - |
dc.contributor.author | Bolton, Scott J. | - |
dc.date.accessioned | 2023-10-20T06:50:37Z | - |
dc.date.available | 2023-10-20T06:50:37Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Science Advances, 2021, v. 7, n. 28, article no. eabf0851 | - |
dc.identifier.uri | http://hdl.handle.net/10722/334769 | - |
dc.description.abstract | Jupiter's rapidly rotating, strong magnetic field provides a natural laboratory that is key to understanding the dynamics of high-energy plasmas. Spectacular auroral x-ray flares are diagnostic of the most energetic processes governing magnetospheres but seemingly unique to Jupiter. Since their discovery 40 years ago, the processes that produce Jupiter's x-ray flares have remained unknown. Here, we report simultaneous in situ satellite and space-based telescope observations that reveal the processes that produce Jupiter's x-ray flares, showing surprising similarities to terrestrial ion aurora. Planetary-scale electromagnetic waves are observed to modulate electromagnetic ion cyclotron waves, periodically causing heavy ions to precipitate and produce Jupiter's x-ray pulses. Our findings show that ion aurorae share common mechanisms across planetary systems, despite temporal, spatial, and energetic scales varying by orders of magnitude. | - |
dc.language | eng | - |
dc.relation.ispartof | Science Advances | - |
dc.title | Revealing the source of Jupiter's x-ray auroral flares | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1126/sciadv.abf0851 | - |
dc.identifier.pmid | 34244139 | - |
dc.identifier.scopus | eid_2-s2.0-85110173583 | - |
dc.identifier.volume | 7 | - |
dc.identifier.issue | 28 | - |
dc.identifier.spage | article no. eabf0851 | - |
dc.identifier.epage | article no. eabf0851 | - |
dc.identifier.eissn | 2375-2548 | - |
dc.identifier.isi | WOS:000672817500004 | - |