File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1029/2022JE007637
- Scopus: eid_2-s2.0-85148723857
- WOS: WOS:001000268500002
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Periodicities and Plasma Density Structure of Jupiter's Dawnside Magnetosphere
Title | Periodicities and Plasma Density Structure of Jupiter's Dawnside Magnetosphere |
---|---|
Authors | |
Keywords | global simulation Jupiter magnetodisc periodicities plasmadisc structure |
Issue Date | 2023 |
Citation | Journal of Geophysical Research: Planets, 2023, v. 128, n. 2, article no. e2022JE007637 How to Cite? |
Abstract | Ability to quantify variations in magnetic field topology and density within Jupiter's magnetosphere is an important step in understanding the overall structure and dynamics. The Juno spacecraft has provided a rich data set in the dawnside magnetosphere. The recent Grid Agnostic MHD for Extended Research Applications (GAMERA) global simulation study by Zhang et al. (2021, https://doi.org/10.1126/sciadv.abd1204) showed a highly structured plasmadisc with closed magnetic field lines mapped between the outer dawn-tail flank and the high-latitude polar region. To test these model predictions, we examined Juno's magnetic field data and electron/energetic particle data to categorize portions of orbits 1–15 into one of three regions based on plasma confinement: the flux pileup region, the intermediate region, and the plasmadisc region. For each region we examined periodicities from magnetic field fluctuations and particle density fluctuations on the 1–10 hr time scale. Periodicities on this time scale could relate to internal (e.g., plasmadisc structure) or external processes (e.g., Kelvin-Helmholtz vortices). Similar analysis was performed on the GAMERA simulation with the data split into two regions, an outer (150 > R > 60) region and an inner (R < 60) region. Finally, using published density moments from Huscher et al. (2021, https://doi.org/10.1029/2021JA029446), we compared the relative density variations of the Juno moments and the GAMERA simulation to further understand the overall structure and dynamics of the plasmadisc. The agreement between data and simulation supports the existence of such a highly structured plasmadisc. |
Persistent Identifier | http://hdl.handle.net/10722/334901 |
ISSN | 2023 Impact Factor: 3.9 2023 SCImago Journal Rankings: 1.650 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Schok, A. A. | - |
dc.contributor.author | Delamere, P. A. | - |
dc.contributor.author | Mino, B. | - |
dc.contributor.author | Damiano, P. A. | - |
dc.contributor.author | Zhang, B. | - |
dc.contributor.author | Sciola, A. | - |
dc.contributor.author | Sorathia, K. | - |
dc.contributor.author | Wing, S. | - |
dc.contributor.author | Johnson, J. R. | - |
dc.contributor.author | Ma, X. | - |
dc.contributor.author | Yao, Z. | - |
dc.contributor.author | Brambles, O. | - |
dc.date.accessioned | 2023-10-20T06:51:36Z | - |
dc.date.available | 2023-10-20T06:51:36Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Journal of Geophysical Research: Planets, 2023, v. 128, n. 2, article no. e2022JE007637 | - |
dc.identifier.issn | 2169-9097 | - |
dc.identifier.uri | http://hdl.handle.net/10722/334901 | - |
dc.description.abstract | Ability to quantify variations in magnetic field topology and density within Jupiter's magnetosphere is an important step in understanding the overall structure and dynamics. The Juno spacecraft has provided a rich data set in the dawnside magnetosphere. The recent Grid Agnostic MHD for Extended Research Applications (GAMERA) global simulation study by Zhang et al. (2021, https://doi.org/10.1126/sciadv.abd1204) showed a highly structured plasmadisc with closed magnetic field lines mapped between the outer dawn-tail flank and the high-latitude polar region. To test these model predictions, we examined Juno's magnetic field data and electron/energetic particle data to categorize portions of orbits 1–15 into one of three regions based on plasma confinement: the flux pileup region, the intermediate region, and the plasmadisc region. For each region we examined periodicities from magnetic field fluctuations and particle density fluctuations on the 1–10 hr time scale. Periodicities on this time scale could relate to internal (e.g., plasmadisc structure) or external processes (e.g., Kelvin-Helmholtz vortices). Similar analysis was performed on the GAMERA simulation with the data split into two regions, an outer (150 > R > 60) region and an inner (R < 60) region. Finally, using published density moments from Huscher et al. (2021, https://doi.org/10.1029/2021JA029446), we compared the relative density variations of the Juno moments and the GAMERA simulation to further understand the overall structure and dynamics of the plasmadisc. The agreement between data and simulation supports the existence of such a highly structured plasmadisc. | - |
dc.language | eng | - |
dc.relation.ispartof | Journal of Geophysical Research: Planets | - |
dc.subject | global simulation | - |
dc.subject | Jupiter | - |
dc.subject | magnetodisc | - |
dc.subject | periodicities | - |
dc.subject | plasmadisc | - |
dc.subject | structure | - |
dc.title | Periodicities and Plasma Density Structure of Jupiter's Dawnside Magnetosphere | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1029/2022JE007637 | - |
dc.identifier.scopus | eid_2-s2.0-85148723857 | - |
dc.identifier.volume | 128 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | article no. e2022JE007637 | - |
dc.identifier.epage | article no. e2022JE007637 | - |
dc.identifier.eissn | 2169-9100 | - |
dc.identifier.isi | WOS:001000268500002 | - |