File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Endothelial-dependent and independent vascular relaxation effect of tetrahydropalmatine on rat aorta

TitleEndothelial-dependent and independent vascular relaxation effect of tetrahydropalmatine on rat aorta
Authors
KeywordsCalcium channel
Calcium influx
Calcium sensitization
Endothelium function
Potassium channel
Tetrahydropalmatine
Vasorelaxation
Issue Date2019
Citation
Frontiers in Pharmacology, 2019, v. 10, n. MAR, article no. 336 How to Cite?
AbstractTetrahydropalmatine (THP) is an active natural alkaloid isolated from Corydalis yanhusuo W.T. Wang which has been widely used for treating pain and cardiovascular disease in traditional Chinese medicine. Previous studies suggested THP have various pharmacological effects in neural and cardio tissue while the vascular reactivity of THP was not fully established. The present study found that THP relaxed rat aorta which contracted by phenylephrine (Phe), KCl, and U46619. The vascular relaxation effect of THP was partially attenuated by PI3K inhibitor wortmannin, Akt inhibitor IV, endothelial nitric oxide synthetase (eNOS) inhibitor L-NAME, guanylate cyclase inhibitors and the mechanical removal of endothelium. Also, the eNOS substrate L-arginine reversed the inhibition effect of L-NAME on THP-induced vascular relaxation. THP also induced intracellular NO production in human umbilical vein endothelial cells. However, Pre-incubation with β-adrenergic receptor blocker propranolol, angiotensin II receptor 1 (AT1) inhibitor losartan, angiotensin II receptor 2 (AT1) inhibitor PD123319 or angiotensin converting enzyme inhibitor enalapril enhanced the vascular relaxation effect of THP. THP did not affect the angiotensin II induced vascular contraction. Cyclooxygenase-2 (COX2) inhibitor indomethacin did not affect the vascular relaxation effect of THP. Furthermore, pre-treatment THP attenuated KCl and Phe induced rat aorta contraction in standard Krebs solution. In Ca2+ free Krebs solution, THP inhibited the Ca2+ induced vascular contraction under KCl or Phe stress and reduced KCl stressed Ca2+ influx in rat vascular smooth muscle cells. THP also inhibited intracellular Ca2+ release induced vascular contraction by blocking Ryr or IP3 receptors. In addition, the voltage-dependent K+ channel (Kv) blocker 4-aminopyridine, ATP-sensitive K+ channel (KATP) blocker glibenclamide and inward rectifying K+ channel blocker BaCl2 attenuated THP induced vascular relaxation regardless of the Ca2+-activated K+ channel (KCa) blocker tetraethylammonium. Thus, we could conclude that THP relaxed rat aorta in an endothelium-dependent and independent manner. The underlying mechanism of THP relaxing rat aorta involved PI3K/Akt/eNOS/NO/cGMP signaling path-way, Ca2+ channels and K+ channels rather than COX2, β-adrenergic receptor and renin-angiotensin system (RAS). These findings indicated that THP might be a potent treatment of diseases with vascular dysfunction like hypertension.
Persistent Identifierhttp://hdl.handle.net/10722/335832
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorZhou, Zhong Yan-
dc.contributor.authorZhao, Wai Rong-
dc.contributor.authorShi, Wen Ting-
dc.contributor.authorXiao, Ying-
dc.contributor.authorMa, Zi Lin-
dc.contributor.authorXue, Jin Gui-
dc.contributor.authorZhang, Lun Qing-
dc.contributor.authorYe, Qing-
dc.contributor.authorChen, Xin Lin-
dc.contributor.authorTang, Jing Yi-
dc.date.accessioned2023-12-28T08:49:05Z-
dc.date.available2023-12-28T08:49:05Z-
dc.date.issued2019-
dc.identifier.citationFrontiers in Pharmacology, 2019, v. 10, n. MAR, article no. 336-
dc.identifier.urihttp://hdl.handle.net/10722/335832-
dc.description.abstractTetrahydropalmatine (THP) is an active natural alkaloid isolated from Corydalis yanhusuo W.T. Wang which has been widely used for treating pain and cardiovascular disease in traditional Chinese medicine. Previous studies suggested THP have various pharmacological effects in neural and cardio tissue while the vascular reactivity of THP was not fully established. The present study found that THP relaxed rat aorta which contracted by phenylephrine (Phe), KCl, and U46619. The vascular relaxation effect of THP was partially attenuated by PI3K inhibitor wortmannin, Akt inhibitor IV, endothelial nitric oxide synthetase (eNOS) inhibitor L-NAME, guanylate cyclase inhibitors and the mechanical removal of endothelium. Also, the eNOS substrate L-arginine reversed the inhibition effect of L-NAME on THP-induced vascular relaxation. THP also induced intracellular NO production in human umbilical vein endothelial cells. However, Pre-incubation with β-adrenergic receptor blocker propranolol, angiotensin II receptor 1 (AT1) inhibitor losartan, angiotensin II receptor 2 (AT1) inhibitor PD123319 or angiotensin converting enzyme inhibitor enalapril enhanced the vascular relaxation effect of THP. THP did not affect the angiotensin II induced vascular contraction. Cyclooxygenase-2 (COX2) inhibitor indomethacin did not affect the vascular relaxation effect of THP. Furthermore, pre-treatment THP attenuated KCl and Phe induced rat aorta contraction in standard Krebs solution. In Ca2+ free Krebs solution, THP inhibited the Ca2+ induced vascular contraction under KCl or Phe stress and reduced KCl stressed Ca2+ influx in rat vascular smooth muscle cells. THP also inhibited intracellular Ca2+ release induced vascular contraction by blocking Ryr or IP3 receptors. In addition, the voltage-dependent K+ channel (Kv) blocker 4-aminopyridine, ATP-sensitive K+ channel (KATP) blocker glibenclamide and inward rectifying K+ channel blocker BaCl2 attenuated THP induced vascular relaxation regardless of the Ca2+-activated K+ channel (KCa) blocker tetraethylammonium. Thus, we could conclude that THP relaxed rat aorta in an endothelium-dependent and independent manner. The underlying mechanism of THP relaxing rat aorta involved PI3K/Akt/eNOS/NO/cGMP signaling path-way, Ca2+ channels and K+ channels rather than COX2, β-adrenergic receptor and renin-angiotensin system (RAS). These findings indicated that THP might be a potent treatment of diseases with vascular dysfunction like hypertension.-
dc.languageeng-
dc.relation.ispartofFrontiers in Pharmacology-
dc.subjectCalcium channel-
dc.subjectCalcium influx-
dc.subjectCalcium sensitization-
dc.subjectEndothelium function-
dc.subjectPotassium channel-
dc.subjectTetrahydropalmatine-
dc.subjectVasorelaxation-
dc.titleEndothelial-dependent and independent vascular relaxation effect of tetrahydropalmatine on rat aorta-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.3389/fphar.2019.00336-
dc.identifier.scopuseid_2-s2.0-85066461835-
dc.identifier.volume10-
dc.identifier.issueMAR-
dc.identifier.spagearticle no. 336-
dc.identifier.epagearticle no. 336-
dc.identifier.eissn1663-9812-
dc.identifier.isiWOS:000465028300001-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats