File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: A new twisted differential line structure in global bus design

TitleA new twisted differential line structure in global bus design
Authors
KeywordsDifferential line
Global bus
Redundant via
Issue Date2007
Citation
Proceedings - Design Automation Conference, 2007, p. 180-183 How to Cite?
AbstractTwisted differential line structure can effectively reduce crosstalk noise on global bus, which foresees a wide applicability. However, measured performance based on fabricated circuits is much worse than simulated performance based on the layout. It is suspected that the via resistance variation is the cause. In this paper, our extensive simulation confirm this. A new redundant via insertion technique is proposed to reduce via variation and signal distortion. In addition, a new buffer insertion technique is proposed to synchronize the transmitted signals, thus further improving the effectiveness of the twisted differential line. Experimental results demonstrate that the new approaches are highly effective. Under a realistic setup, a 6GHz signal can be transmitted with high fidelity using the new approaches. In contrast, only a 100MHz signal can be reliably transmitted using a single-end model with power/ground shielding. In addition, compared to conventional twisted differential line structure, our new techniques can reduce the magnitude of noise by 45%. Furthermore, compared to unbuffered twisted differential line structure, the maximum signal phase difference is reduced from 37ps to 7ps by the new buffer insertion technique. Copyright 2007 ACM.
Persistent Identifierhttp://hdl.handle.net/10722/336053
ISSN
2020 SCImago Journal Rankings: 0.518

 

DC FieldValueLanguage
dc.contributor.authorZhanyuan, Jiang-
dc.contributor.authorShiyan, Hu-
dc.contributor.authorWeiping, Shi-
dc.date.accessioned2024-01-15T08:22:23Z-
dc.date.available2024-01-15T08:22:23Z-
dc.date.issued2007-
dc.identifier.citationProceedings - Design Automation Conference, 2007, p. 180-183-
dc.identifier.issn0738-100X-
dc.identifier.urihttp://hdl.handle.net/10722/336053-
dc.description.abstractTwisted differential line structure can effectively reduce crosstalk noise on global bus, which foresees a wide applicability. However, measured performance based on fabricated circuits is much worse than simulated performance based on the layout. It is suspected that the via resistance variation is the cause. In this paper, our extensive simulation confirm this. A new redundant via insertion technique is proposed to reduce via variation and signal distortion. In addition, a new buffer insertion technique is proposed to synchronize the transmitted signals, thus further improving the effectiveness of the twisted differential line. Experimental results demonstrate that the new approaches are highly effective. Under a realistic setup, a 6GHz signal can be transmitted with high fidelity using the new approaches. In contrast, only a 100MHz signal can be reliably transmitted using a single-end model with power/ground shielding. In addition, compared to conventional twisted differential line structure, our new techniques can reduce the magnitude of noise by 45%. Furthermore, compared to unbuffered twisted differential line structure, the maximum signal phase difference is reduced from 37ps to 7ps by the new buffer insertion technique. Copyright 2007 ACM.-
dc.languageeng-
dc.relation.ispartofProceedings - Design Automation Conference-
dc.subjectDifferential line-
dc.subjectGlobal bus-
dc.subjectRedundant via-
dc.titleA new twisted differential line structure in global bus design-
dc.typeConference_Paper-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/DAC.2007.375148-
dc.identifier.scopuseid_2-s2.0-34547244797-
dc.identifier.spage180-
dc.identifier.epage183-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats