File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TCAD.2011.2160178
- Scopus: eid_2-s2.0-80053285657
- WOS: WOS:000295099800013
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Reliability-driven energy-efficient task scheduling for multiprocessor real-time systems
Title | Reliability-driven energy-efficient task scheduling for multiprocessor real-time systems |
---|---|
Authors | |
Keywords | Energy efficient multiprocessor system real-time systems reliability task scheduling |
Issue Date | 2011 |
Citation | IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2011, v. 30, n. 10, p. 1569-1573 How to Cite? |
Abstract | This paper proposes a reliability-driven task scheduling scheme for multiprocessor real-time embedded systems that optimizes system energy consumption under stochastic fault occurrences. The task scheduling problem is formulated as an integer linear program where a novel fault adaptation variable is introduced to model the uncertainties of fault occurrences. The proposed scheme, which considers both the dynamic power and the leakage power, is able to handle the scheduling of independent tasks and tasks with precedence constraints, and is capable of scheduling tasks with varying deadlines. Experimental results have demonstrated that the proposed reliability-driven parallel scheduling scheme achieves energy savings of more than 15% when compared to the approach of designing for the corner case of fault occurrences. © 2006 IEEE. |
Persistent Identifier | http://hdl.handle.net/10722/336096 |
ISSN | 2023 Impact Factor: 2.7 2023 SCImago Journal Rankings: 0.957 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wei, Tongquan | - |
dc.contributor.author | Chen, Xiaodao | - |
dc.contributor.author | Hu, Shiyan | - |
dc.date.accessioned | 2024-01-15T08:23:24Z | - |
dc.date.available | 2024-01-15T08:23:24Z | - |
dc.date.issued | 2011 | - |
dc.identifier.citation | IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2011, v. 30, n. 10, p. 1569-1573 | - |
dc.identifier.issn | 0278-0070 | - |
dc.identifier.uri | http://hdl.handle.net/10722/336096 | - |
dc.description.abstract | This paper proposes a reliability-driven task scheduling scheme for multiprocessor real-time embedded systems that optimizes system energy consumption under stochastic fault occurrences. The task scheduling problem is formulated as an integer linear program where a novel fault adaptation variable is introduced to model the uncertainties of fault occurrences. The proposed scheme, which considers both the dynamic power and the leakage power, is able to handle the scheduling of independent tasks and tasks with precedence constraints, and is capable of scheduling tasks with varying deadlines. Experimental results have demonstrated that the proposed reliability-driven parallel scheduling scheme achieves energy savings of more than 15% when compared to the approach of designing for the corner case of fault occurrences. © 2006 IEEE. | - |
dc.language | eng | - |
dc.relation.ispartof | IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems | - |
dc.subject | Energy efficient | - |
dc.subject | multiprocessor system | - |
dc.subject | real-time systems | - |
dc.subject | reliability | - |
dc.subject | task scheduling | - |
dc.title | Reliability-driven energy-efficient task scheduling for multiprocessor real-time systems | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/TCAD.2011.2160178 | - |
dc.identifier.scopus | eid_2-s2.0-80053285657 | - |
dc.identifier.volume | 30 | - |
dc.identifier.issue | 10 | - |
dc.identifier.spage | 1569 | - |
dc.identifier.epage | 1573 | - |
dc.identifier.isi | WOS:000295099800013 | - |