File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
  • Find via Find It@HKUL
Supplementary

Article: Local Rademacher Complexity-based Learning Guarantees for Multi-task Learning

TitleLocal Rademacher Complexity-based Learning Guarantees for Multi-task Learning
Authors
Issue Date1-Aug-2018
PublisherJournal of Machine Learning Research
Citation
Journal of Machine Learning Research, 2018, v. 19, n. 38 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/337192
ISSN
2023 Impact Factor: 4.3
2023 SCImago Journal Rankings: 2.796

 

DC FieldValueLanguage
dc.contributor.authorYousefi, N-
dc.contributor.authorLei, Y-
dc.contributor.authorKloft, M-
dc.contributor.authorMollaghasemi, M-
dc.contributor.authorAnagnostopoulos, G-
dc.date.accessioned2024-03-11T10:18:48Z-
dc.date.available2024-03-11T10:18:48Z-
dc.date.issued2018-08-01-
dc.identifier.citationJournal of Machine Learning Research, 2018, v. 19, n. 38-
dc.identifier.issn1532-4435-
dc.identifier.urihttp://hdl.handle.net/10722/337192-
dc.languageeng-
dc.publisherJournal of Machine Learning Research-
dc.relation.ispartofJournal of Machine Learning Research-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleLocal Rademacher Complexity-based Learning Guarantees for Multi-task Learning-
dc.typeArticle-
dc.identifier.volume19-
dc.identifier.issue38-
dc.identifier.eissn1533-7928-
dc.identifier.issnl1532-4435-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats