File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: The ozone–water complex: CCSD(T)/CBS structures and anharmonic vibrational spectroscopy of O3(H2O)n, (n = 1 − 2)

TitleThe ozone–water complex: CCSD(T)/CBS structures and anharmonic vibrational spectroscopy of O3(H2O)<i>n</i>, (<i>n</i> = 1 − 2)
Authors
Issue Date24-Aug-2020
PublisherAmerican Institute of Physics
Citation
The Journal of Chemical Physics, 2020, v. 153, n. 8 How to Cite?
Abstract

Ozone–water complexes O3(H2O)n (n = 1–2) have been studied using coupled cluster theory with triple excitations CCSD(T) with correlation consistent basis sets aug-cc-pVnZ (n = D, T, Q) and complete basis set (CBS) extrapolation techniques. We identified seven dimer (n = 1) and nine trimer species (n = 2) with open C2v and cyclic D3h ozone. Calculations at the CCSD(T)/CBS level of theory for C2v O3(H2O) on the counterpoise (CP)-corrected potential energy surface yield a dissociation energy of De = 2.31 kcal/mol and an O3 central-oxygen (Oc) H2O oxygen (Ow) distance r[Oc⋯Ow] of 3.097 Å, which is in good agreement with an experimental value of 2.957 Å [J. Z. Gillies et al., J. Mol. Spectrosc. 146, 493 (1991)]. Combining our CCSD(T)/CBS value of De for C2v O3(H2O) with our best estimate anharmonic CCSD(T)/aVTZ ΔZPE yields a Do value of 1.82 kcal/mol; the CCSD(T)/CBS value of De for D3h O3(H2O) is 1.51 kcal/mol and yields an anharmonic CCSD(T)/aVTZ Do = 0.99 kcal/mol. CCSD(T)/aVTZ dissociation energies and structures for C2v O3(H2O)2 are De = 4.15 kcal/mol, (Do = 3.08 kcal/mol) and r[Oc⋯Ow] = 2.973 Å, and De = 2.64 kcal/mol (Do = 1.68 kcal/mol) with r[Oc⋯Ow] = 2.828 Å for D3h O3(H2O)2. The results from ab initio molecular dynamics simulations, which consider dynamic and thermal effects in O3(H2O), show that the O3(H2O) complex remains stable at 50 K and dynamically interconverts between two hydrogen-bonded conformers with short Oc⋯Ow contacts (3.85 Å). Carr–Parrinello molecular dynamic (CPMD) simulations for O3(H2O) and O3(H2O)2 at 100 K demonstrate that O3(H2O)2 remains structurally intact, whereas O3(H2O) dissociates to free ozone and water, a feature consistent with the larger average binding energy in O3(H2O)2 (2.2 kcal/mol) vs that in O3(H2O) (1.8 kcal/mol). Finally, the results from CCSD(T)/CBS and CPMD simulations demonstrate that the large inter-trimer binding energies in O3(H2O)2 would give rise to an elevated trimer/dimer population ratio, making O3(H2O)2 a particularly stable and spectroscopically detectable complex.


Persistent Identifierhttp://hdl.handle.net/10722/337499
ISSN
2023 Impact Factor: 3.1
2023 SCImago Journal Rankings: 1.101
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorHui, Wallace C H-
dc.contributor.authorLemke, Kono H-
dc.date.accessioned2024-03-11T10:21:22Z-
dc.date.available2024-03-11T10:21:22Z-
dc.date.issued2020-08-24-
dc.identifier.citationThe Journal of Chemical Physics, 2020, v. 153, n. 8-
dc.identifier.issn0021-9606-
dc.identifier.urihttp://hdl.handle.net/10722/337499-
dc.description.abstract<p>Ozone–water complexes O<sub>3</sub>(H<sub>2</sub>O)<sub><em>n</em></sub> (<em>n</em> = 1–2) have been studied using coupled cluster theory with triple excitations CCSD(T) with correlation consistent basis sets aug-cc-pV<em>n</em>Z (<em>n</em> = D, T, Q) and complete basis set (CBS) extrapolation techniques. We identified seven dimer (<em>n</em> = 1) and nine trimer species (<em>n</em> = 2) with open C<sub>2<em>v</em></sub> and cyclic D<sub>3<em>h</em></sub> ozone. Calculations at the CCSD(T)/CBS level of theory for C<sub>2<em>v</em></sub> O<sub>3</sub>(H<sub>2</sub>O) on the counterpoise (CP)-corrected potential energy surface yield a dissociation energy of D<sub><em>e</em></sub> = 2.31 kcal/mol and an O<sub>3</sub> central-oxygen (O<sub><em>c</em></sub>) H<sub>2</sub>O oxygen (O<sub><em>w</em></sub>) distance <em>r</em>[O<sub><em>c</em></sub>⋯O<sub><em>w</em></sub>] of 3.097 Å, which is in good agreement with an experimental value of 2.957 Å [J. Z. Gillies <em>et al.</em>, J. Mol. Spectrosc. <strong>146</strong>, 493 (1991)]. Combining our CCSD(T)/CBS value of D<sub><em>e</em></sub> for C<sub>2<em>v</em></sub> O<sub>3</sub>(H<sub>2</sub>O) with our best estimate anharmonic CCSD(T)/aVTZ ΔZPE yields a D<sub>o</sub> value of 1.82 kcal/mol; the CCSD(T)/CBS value of D<sub><em>e</em></sub> for D<sub>3<em>h</em></sub> O<sub>3</sub>(H<sub>2</sub>O) is 1.51 kcal/mol and yields an anharmonic CCSD(T)/aVTZ D<sub>o</sub> = 0.99 kcal/mol. CCSD(T)/aVTZ dissociation energies and structures for C<sub>2<em>v</em></sub> O<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub> are D<sub><em>e</em></sub> = 4.15 kcal/mol, (D<sub>o</sub> = 3.08 kcal/mol) and <em>r</em>[O<sub><em>c</em></sub>⋯O<sub><em>w</em></sub>] = 2.973 Å, and D<sub><em>e</em></sub> = 2.64 kcal/mol (D<sub>o</sub> = 1.68 kcal/mol) with <em>r</em>[O<sub><em>c</em></sub>⋯O<sub><em>w</em></sub>] = 2.828 Å for D<sub>3<em>h</em></sub> O<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>. The results from <em>ab initio</em> molecular dynamics simulations, which consider dynamic and thermal effects in O<sub>3</sub>(H<sub>2</sub>O), show that the O<sub>3</sub>(H<sub>2</sub>O) complex remains stable at 50 K and dynamically interconverts between two hydrogen-bonded conformers with short O<sub><em>c</em></sub>⋯O<sub><em>w</em></sub> contacts (3.85 Å). Carr–Parrinello molecular dynamic (CPMD) simulations for O<sub>3</sub>(H<sub>2</sub>O) and O<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub> at 100 K demonstrate that O<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub> remains structurally intact, whereas O<sub>3</sub>(H<sub>2</sub>O) dissociates to free ozone and water, a feature consistent with the larger average binding energy in O<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub> (2.2 kcal/mol) vs that in O<sub>3</sub>(H<sub>2</sub>O) (1.8 kcal/mol). Finally, the results from CCSD(T)/CBS and CPMD simulations demonstrate that the large inter-trimer binding energies in O<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub> would give rise to an elevated trimer/dimer population ratio, making O<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub> a particularly stable and spectroscopically detectable complex.</p>-
dc.languageeng-
dc.publisherAmerican Institute of Physics-
dc.relation.ispartofThe Journal of Chemical Physics-
dc.titleThe ozone–water complex: CCSD(T)/CBS structures and anharmonic vibrational spectroscopy of O3(H2O)<i>n</i>, (<i>n</i> = 1 − 2)-
dc.typeArticle-
dc.identifier.doi10.1063/5.0015597-
dc.identifier.scopuseid_2-s2.0-85090089441-
dc.identifier.volume153-
dc.identifier.issue8-
dc.identifier.eissn1089-7690-
dc.identifier.isiWOS:000565328400002-
dc.identifier.issnl0021-9606-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats