File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Quasi-Optimality of an Adaptive Finite Element Method for Cathodic Protection

TitleQuasi-Optimality of an Adaptive Finite Element Method for Cathodic Protection
Authors
KeywordsA posteriori error estimator
Adaptive finite element method
Cathodic protection
Nonlinear boundary condition
Quasi-optimality
Issue Date12-Aug-2019
PublisherEDP Sciences
Citation
ESAIM: Mathematical Modelling and Numerical Analysis, 2019, v. 53, n. 5, p. 1645-1665 How to Cite?
Abstract

In this work, we derive a reliable and efficient residual-typed error estimator for the finite element approximation of a 2D cathodic protection problem governed by a steady-state diffusion equation with a nonlinear boundary condition. We propose a standard adaptive finite element method involving the Dörfler marking and a minimal refinement without the interior node property. Furthermore, we establish the contraction property of this adaptive algorithm in terms of the sum of the energy error and the scaled estimator. This essentially allows for a quasi-optimal convergence rate in terms of the number of elements over the underlying triangulation. Numerical experiments are provided to confirm this quasi-optimality.


Persistent Identifierhttp://hdl.handle.net/10722/337533
ISSN
2023 Impact Factor: 2.1
2023 SCImago Journal Rankings: 1.247
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLi, Guanglian-
dc.contributor.authorXu, Yifeng -
dc.date.accessioned2024-03-11T10:21:38Z-
dc.date.available2024-03-11T10:21:38Z-
dc.date.issued2019-08-12-
dc.identifier.citationESAIM: Mathematical Modelling and Numerical Analysis, 2019, v. 53, n. 5, p. 1645-1665-
dc.identifier.issn2822-7840-
dc.identifier.urihttp://hdl.handle.net/10722/337533-
dc.description.abstract<p>In this work, we derive a reliable and efficient residual-typed error estimator for the finite element approximation of a 2D cathodic protection problem governed by a steady-state diffusion equation with a nonlinear boundary condition. We propose a standard adaptive finite element method involving the Dörfler marking and a minimal refinement without the interior node property. Furthermore, we establish the contraction property of this adaptive algorithm in terms of the sum of the energy error and the scaled estimator. This essentially allows for a quasi-optimal convergence rate in terms of the number of elements over the underlying triangulation. Numerical experiments are provided to confirm this quasi-optimality.<br></p>-
dc.languageeng-
dc.publisherEDP Sciences-
dc.relation.ispartofESAIM: Mathematical Modelling and Numerical Analysis-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectA posteriori error estimator-
dc.subjectAdaptive finite element method-
dc.subjectCathodic protection-
dc.subjectNonlinear boundary condition-
dc.subjectQuasi-optimality-
dc.titleQuasi-Optimality of an Adaptive Finite Element Method for Cathodic Protection-
dc.typeArticle-
dc.identifier.doi10.1051/m2an/2019031-
dc.identifier.scopuseid_2-s2.0-85103486044-
dc.identifier.volume53-
dc.identifier.issue5-
dc.identifier.spage1645-
dc.identifier.epage1665-
dc.identifier.eissn2804-7214-
dc.identifier.isiWOS:000480470700002-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats