File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.7554/eLife.80547
- Scopus: eid_2-s2.0-85139572217
- WOS: WOS:000961539900001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Early stage NSCLS patients' prognostic prediction with multi-information using transformer and graph neural network model
Title | Early stage NSCLS patients' prognostic prediction with multi-information using transformer and graph neural network model |
---|---|
Authors | |
Keywords | computational biology computed tomography lung cancer medical imaging medicine none prognostic model survival systems biology transformer cnn |
Issue Date | 4-Oct-2022 |
Publisher | eLife Sciences Publications |
Citation | eLife, 2022, v. 11 How to Cite? |
Abstract | BACKGROUND: We proposed a population graph with Transformer-generated and clinical features for the purpose of predicting overall survival (OS) and recurrence-free survival (RFS) for patients with early stage non-small cell lung carcinomas and to compare this model with traditional models. METHODS: The study included 1705 patients with lung cancer (stages I and II), and a public data set for external validation (n=127). We proposed a graph with edges representing non-imaging patient characteristics and nodes representing imaging tumour region characteristics generated by a pretrained Vision Transformer. The model was compared with a TNM model and a ResNet-Graph model. To evaluate the models' performance, the area under the receiver operator characteristic curve (ROC-AUC) was calculated for both OS and RFS prediction. The Kaplan-Meier method was used to generate prognostic and survival estimates for low- and high-risk groups, along with net reclassification improvement (NRI), integrated discrimination improvement (IDI), and decision curve analysis. An additional subanalysis was conducted to examine the relationship between clinical data and imaging features associated with risk prediction. RESULTS: Our model achieved AUC values of 0.785 (95\% confidence interval [CI]: 0.716-0.855) and 0.695 (95\% CI: 0.603-0.787) on the testing and external data sets for OS prediction, and 0.726 (95\% CI: 0.653-0.800) and 0.700 (95\% CI: 0.615-0.785) for RFS prediction. Additional survival analyses indicated that our model outperformed the present TNM and ResNet-Graph models in terms of net benefit for survival prediction. CONCLUSIONS: Our Transformer-Graph model was effective at predicting survival in patients with early stage lung cancer, which was constructed using both imaging and non-imaging clinical features. Some high-risk patients were distinguishable by using a similarity score function defined by non-imaging characteristics such as age, gender, histology type, and tumour location, while Transformer-generated features demonstrated additional benefits for patients whose non-imaging characteristics were non-discriminatory for survival outcomes. FUNDING: The study was supported by the National Natural Science Foundation of China (91959126, 8210071009), and Science and Technology Commission of Shanghai Municipality (20XD1403000, 21YF1438200). |
Persistent Identifier | http://hdl.handle.net/10722/337956 |
ISSN | 2023 Impact Factor: 6.4 2023 SCImago Journal Rankings: 3.932 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lian, J | - |
dc.contributor.author | Deng, J | - |
dc.contributor.author | Hui, ES | - |
dc.contributor.author | Koohi-Moghadam, M | - |
dc.contributor.author | She, Y | - |
dc.contributor.author | Chen, C | - |
dc.contributor.author | Vardhanabhuti, V | - |
dc.date.accessioned | 2024-03-11T10:25:11Z | - |
dc.date.available | 2024-03-11T10:25:11Z | - |
dc.date.issued | 2022-10-04 | - |
dc.identifier.citation | eLife, 2022, v. 11 | - |
dc.identifier.issn | 2050-084X | - |
dc.identifier.uri | http://hdl.handle.net/10722/337956 | - |
dc.description.abstract | BACKGROUND: We proposed a population graph with Transformer-generated and clinical features for the purpose of predicting overall survival (OS) and recurrence-free survival (RFS) for patients with early stage non-small cell lung carcinomas and to compare this model with traditional models. METHODS: The study included 1705 patients with lung cancer (stages I and II), and a public data set for external validation (n=127). We proposed a graph with edges representing non-imaging patient characteristics and nodes representing imaging tumour region characteristics generated by a pretrained Vision Transformer. The model was compared with a TNM model and a ResNet-Graph model. To evaluate the models' performance, the area under the receiver operator characteristic curve (ROC-AUC) was calculated for both OS and RFS prediction. The Kaplan-Meier method was used to generate prognostic and survival estimates for low- and high-risk groups, along with net reclassification improvement (NRI), integrated discrimination improvement (IDI), and decision curve analysis. An additional subanalysis was conducted to examine the relationship between clinical data and imaging features associated with risk prediction. RESULTS: Our model achieved AUC values of 0.785 (95\% confidence interval [CI]: 0.716-0.855) and 0.695 (95\% CI: 0.603-0.787) on the testing and external data sets for OS prediction, and 0.726 (95\% CI: 0.653-0.800) and 0.700 (95\% CI: 0.615-0.785) for RFS prediction. Additional survival analyses indicated that our model outperformed the present TNM and ResNet-Graph models in terms of net benefit for survival prediction. CONCLUSIONS: Our Transformer-Graph model was effective at predicting survival in patients with early stage lung cancer, which was constructed using both imaging and non-imaging clinical features. Some high-risk patients were distinguishable by using a similarity score function defined by non-imaging characteristics such as age, gender, histology type, and tumour location, while Transformer-generated features demonstrated additional benefits for patients whose non-imaging characteristics were non-discriminatory for survival outcomes. FUNDING: The study was supported by the National Natural Science Foundation of China (91959126, 8210071009), and Science and Technology Commission of Shanghai Municipality (20XD1403000, 21YF1438200). | - |
dc.language | eng | - |
dc.publisher | eLife Sciences Publications | - |
dc.relation.ispartof | eLife | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | computational biology | - |
dc.subject | computed tomography | - |
dc.subject | lung cancer | - |
dc.subject | medical imaging | - |
dc.subject | medicine | - |
dc.subject | none | - |
dc.subject | prognostic model | - |
dc.subject | survival | - |
dc.subject | systems biology | - |
dc.subject | transformer cnn | - |
dc.title | Early stage NSCLS patients' prognostic prediction with multi-information using transformer and graph neural network model | - |
dc.type | Article | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.7554/eLife.80547 | - |
dc.identifier.scopus | eid_2-s2.0-85139572217 | - |
dc.identifier.volume | 11 | - |
dc.identifier.eissn | 2050-084X | - |
dc.identifier.isi | WOS:000961539900001 | - |
dc.identifier.issnl | 2050-084X | - |