File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: On length sets of subarithmetic hyperbolic manifolds

TitleOn length sets of subarithmetic hyperbolic manifolds
Authors
Issue Date2-Sep-2023
PublisherSpringer
Citation
Mathematische Annalen, 2023 How to Cite?
Abstract

In this paper, we study the set of lengths of closed geodesics (or equivalently, the set of traces of the fundamental group) of a hyperbolic manifold. By "subarithmetic," we mean a manifold whose set of traces takes values in a ring of algebraic integers. For such, we formulate the "Asymptotic Length-Saturation Conjecture", which states that, under certain natural conditions, there is an asymptotic local-global principle for the trace set. We prove the first instance of the conjecture for punctured, Zariski dense covers of the modular surface.


Persistent Identifierhttp://hdl.handle.net/10722/338151
ISSN
2023 Impact Factor: 1.3
2023 SCImago Journal Rankings: 1.918
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorKontorovich, Alex-
dc.contributor.authorZhang, Xin-
dc.date.accessioned2024-03-11T10:26:38Z-
dc.date.available2024-03-11T10:26:38Z-
dc.date.issued2023-09-02-
dc.identifier.citationMathematische Annalen, 2023-
dc.identifier.issn0025-5831-
dc.identifier.urihttp://hdl.handle.net/10722/338151-
dc.description.abstract<p>In this paper, we study the set of lengths of closed geodesics (or equivalently, the set of traces of the fundamental group) of a hyperbolic manifold. By "subarithmetic," we mean a manifold whose set of traces takes values in a ring of algebraic integers. For such, we formulate the "Asymptotic Length-Saturation Conjecture", which states that, under certain natural conditions, there is an asymptotic local-global principle for the trace set. We prove the first instance of the conjecture for punctured, Zariski dense covers of the modular surface.<br></p>-
dc.languageeng-
dc.publisherSpringer-
dc.relation.ispartofMathematische Annalen-
dc.titleOn length sets of subarithmetic hyperbolic manifolds-
dc.typeArticle-
dc.identifier.doi10.1007/s00208-023-02713-8-
dc.identifier.scopuseid_2-s2.0-85169579265-
dc.identifier.eissn1432-1807-
dc.identifier.isiWOS:001057075000001-
dc.identifier.issnl0025-5831-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats