File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Vegetation descriptors from Sentinel-1 SAR data for crop growth monitoring

TitleVegetation descriptors from Sentinel-1 SAR data for crop growth monitoring
Authors
KeywordsCrop growth
Dual-polarization
Sentinel-1
Unsupervised classification
Vegetation descriptors
Issue Date1-Sep-2023
PublisherElsevier
Citation
ISPRS Journal of Photogrammetry and Remote Sensing, 2023, v. 203, p. 86-114 How to Cite?
AbstractSynthetic aperture radar (SAR) remote sensing technology has the advantage of all-weather observation and can acquire time-series images with crop growth period, which has great potential for applications such as crop phenology analysis. However, available studies primarily focus on conducting statistical and crop growth analyses based on the polarization or backscatter intensities of SAR images, and the exploration of polarization scattering information in SAR images is not sufficient. To comprehensively reflect the polarization characteristics and scattering mechanisms of crop at different growth stages, we propose a new method for extracting vegetation descriptors from Sentinel-1 dual-polarimetric SAR data. The method combines the backscattering intensity and polarization decomposition information to construct a normalized index q, which is used to generate three vegetation descriptors: the co-pol purity parameter (mcp), the pseudo-scattering angle (t9cp), and the pseudoscattering entropy (Hcp). Further, a novel unsupervised clustering framework, founded on Hcp and t9cp, has been proposed. This framework establishes six zones (named as Z1 to Z6) representing distinct physical scattering mechanisms, and by statistically sampling point data, it can determine the growth stage of the crops For validating the performance of the proposed vegetation descriptors and clustering framework, we conducted a three-year experiment using four crops from two publicly available datasets, namely wheat and canola from the Carman in Canada (Test site-1), corn and soybeans from Iowa in the United States (Test site-2). The experimental results indicate that mcp,t9cp, and Hcp exhibit regular changes at different growth stages of crops from planting to maturity, with mcp and t9cp gradually decreasing while Hcp gradually increasing. Within the entire phenology window, t9cp changes by approximately 42 degrees, while both mcp and t9cp varies by about 0.9, and the sampling points shift from the Z2 to the Z5 zone. The vegetation descriptors are highly sensitive to the growth status of crops, and the clustering framework can also effectively respond to different growth stages of vegetation. Furthermore, the vegetation descriptors and clustering framework proposed in this study have the potential for extended application to different crop types and other polarimetric SAR data sources.
Persistent Identifierhttp://hdl.handle.net/10722/338925
ISSN
2023 Impact Factor: 10.6
2023 SCImago Journal Rankings: 3.760
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorBao, X-
dc.contributor.authorZhang, R-
dc.contributor.authorLv, JC-
dc.contributor.authorWu, RZ-
dc.contributor.authorZhang, HS-
dc.contributor.authorChen, J-
dc.contributor.authorZhang, B-
dc.contributor.authorOuyang, XY-
dc.contributor.authorLiu, GX -
dc.date.accessioned2024-03-11T10:32:35Z-
dc.date.available2024-03-11T10:32:35Z-
dc.date.issued2023-09-01-
dc.identifier.citationISPRS Journal of Photogrammetry and Remote Sensing, 2023, v. 203, p. 86-114-
dc.identifier.issn0924-2716-
dc.identifier.urihttp://hdl.handle.net/10722/338925-
dc.description.abstractSynthetic aperture radar (SAR) remote sensing technology has the advantage of all-weather observation and can acquire time-series images with crop growth period, which has great potential for applications such as crop phenology analysis. However, available studies primarily focus on conducting statistical and crop growth analyses based on the polarization or backscatter intensities of SAR images, and the exploration of polarization scattering information in SAR images is not sufficient. To comprehensively reflect the polarization characteristics and scattering mechanisms of crop at different growth stages, we propose a new method for extracting vegetation descriptors from Sentinel-1 dual-polarimetric SAR data. The method combines the backscattering intensity and polarization decomposition information to construct a normalized index q, which is used to generate three vegetation descriptors: the co-pol purity parameter (mcp), the pseudo-scattering angle (t9cp), and the pseudoscattering entropy (Hcp). Further, a novel unsupervised clustering framework, founded on Hcp and t9cp, has been proposed. This framework establishes six zones (named as Z1 to Z6) representing distinct physical scattering mechanisms, and by statistically sampling point data, it can determine the growth stage of the crops For validating the performance of the proposed vegetation descriptors and clustering framework, we conducted a three-year experiment using four crops from two publicly available datasets, namely wheat and canola from the Carman in Canada (Test site-1), corn and soybeans from Iowa in the United States (Test site-2). The experimental results indicate that mcp,t9cp, and Hcp exhibit regular changes at different growth stages of crops from planting to maturity, with mcp and t9cp gradually decreasing while Hcp gradually increasing. Within the entire phenology window, t9cp changes by approximately 42 degrees, while both mcp and t9cp varies by about 0.9, and the sampling points shift from the Z2 to the Z5 zone. The vegetation descriptors are highly sensitive to the growth status of crops, and the clustering framework can also effectively respond to different growth stages of vegetation. Furthermore, the vegetation descriptors and clustering framework proposed in this study have the potential for extended application to different crop types and other polarimetric SAR data sources.-
dc.languageeng-
dc.publisherElsevier-
dc.relation.ispartofISPRS Journal of Photogrammetry and Remote Sensing-
dc.subjectCrop growth-
dc.subjectDual-polarization-
dc.subjectSentinel-1-
dc.subjectUnsupervised classification-
dc.subjectVegetation descriptors-
dc.titleVegetation descriptors from Sentinel-1 SAR data for crop growth monitoring-
dc.typeArticle-
dc.identifier.doi10.1016/j.isprsjprs.2023.07.023-
dc.identifier.scopuseid_2-s2.0-85169921644-
dc.identifier.volume203-
dc.identifier.spage86-
dc.identifier.epage114-
dc.identifier.eissn1872-8235-
dc.identifier.isiWOS:001053033400001-
dc.publisher.placeAMSTERDAM-
dc.identifier.issnl0924-2716-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats