File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.colsurfb.2023.113720
- Scopus: eid_2-s2.0-85181084159
- WOS: WOS:001165821500001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: All-aqueous microfluidic printing of multifunctional bioactive microfibers promote whole-stage wound healing
Title | All-aqueous microfluidic printing of multifunctional bioactive microfibers promote whole-stage wound healing |
---|---|
Authors | |
Keywords | All-aqueous microfluidics Aqueous-two phase system Interfacial coacervation Microfibers Wound healing |
Issue Date | 1-Feb-2024 |
Publisher | Elsevier |
Citation | Colloids and Surfaces B: Biointerfaces, 2024, v. 234 How to Cite? |
Abstract | Wound healing involves multi-stages of physiological responses, including hemostasis, inflammation, cell proliferation, and tissue remodeling. Satisfying all demands throughout different stages remains a rarely addressed challenge. Here we introduce an innovative all-aqueous microfluidic printing technique for fabricating multifunctional bioactive microfibers, effectively contributing to all four phases of the healing process. The distinctive feature of the developed microfibers lies in their capacity to be printed in a free-form manner in the aqueous-two phase system (ATPS). This is achieved through interfacial coacervation between alkyl-chitosan and alginate, with enhanced structural integrity facilitated by simultaneous crosslinking with calcium ions and alginate. The all-aqueous printed microfibers exhibit exceptional performance in terms of cell recruitment, blood cell coagulation, and hemostasis. The inclusion of a dodecyl carbon chain and amino groups in alkyl-chitosan imparts remarkable antimicrobial properties by anchoring to bacteria, complemented by potent antibacterial effects of encapsulated silver nanoparticles. Moreover, microfibers can load bioactive drugs like epidermal growth factor (EGF), preserving their activity and enhancing therapeutic effects during cell proliferation and tissue remodeling. With these sequential functions to guide the whole-stage wound healing, this work offers a versatile and robust paradigm for comprehensive wound treatment, holding great potential for optimal healing outcomes. |
Persistent Identifier | http://hdl.handle.net/10722/340125 |
ISSN | 2023 Impact Factor: 5.4 2023 SCImago Journal Rankings: 0.910 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xu, Fenglan | - |
dc.contributor.author | Sun, Wentao | - |
dc.contributor.author | Ma, Wenyuan | - |
dc.contributor.author | Wang, Weijiang | - |
dc.contributor.author | Kong, Dejuan | - |
dc.contributor.author | Chan, Yau Kei | - |
dc.contributor.author | Ma, Qingming | - |
dc.date.accessioned | 2024-03-11T10:41:51Z | - |
dc.date.available | 2024-03-11T10:41:51Z | - |
dc.date.issued | 2024-02-01 | - |
dc.identifier.citation | Colloids and Surfaces B: Biointerfaces, 2024, v. 234 | - |
dc.identifier.issn | 0927-7765 | - |
dc.identifier.uri | http://hdl.handle.net/10722/340125 | - |
dc.description.abstract | <p><a href="https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/wound-healing" title="Learn more about Wound healing from ScienceDirect's AI-generated Topic Pages">Wound healing</a> involves multi-stages of physiological responses, including <a href="https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/hemostasis" title="Learn more about hemostasis from ScienceDirect's AI-generated Topic Pages">hemostasis</a>, inflammation, <a href="https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cell-proliferation" title="Learn more about cell proliferation from ScienceDirect's AI-generated Topic Pages">cell proliferation</a>, and tissue remodeling. Satisfying all demands throughout different stages remains a rarely addressed challenge. Here we introduce an innovative all-aqueous microfluidic printing technique for fabricating multifunctional bioactive <a href="https://www.sciencedirect.com/topics/chemistry/microfiber" title="Learn more about microfibers from ScienceDirect's AI-generated Topic Pages">microfibers</a>, effectively contributing to all four phases of the healing process. The distinctive feature of the developed <a href="https://www.sciencedirect.com/topics/physics-and-astronomy/microfiber" title="Learn more about microfibers from ScienceDirect's AI-generated Topic Pages">microfibers</a> lies in their capacity to be printed in a free-form manner in the aqueous-two phase system (ATPS). This is achieved through interfacial <a href="https://www.sciencedirect.com/topics/chemistry/coacervation" title="Learn more about coacervation from ScienceDirect's AI-generated Topic Pages">coacervation</a> between alkyl-chitosan and <a href="https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/alginate" title="Learn more about alginate from ScienceDirect's AI-generated Topic Pages">alginate</a>, with enhanced structural integrity facilitated by simultaneous crosslinking with <a href="https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/calcium-ion" title="Learn more about calcium ions from ScienceDirect's AI-generated Topic Pages">calcium ions</a> and <a href="https://www.sciencedirect.com/topics/chemical-engineering/alginate" title="Learn more about alginate from ScienceDirect's AI-generated Topic Pages">alginate</a>. The all-aqueous printed <a href="https://www.sciencedirect.com/topics/chemistry/microfiber" title="Learn more about microfibers from ScienceDirect's AI-generated Topic Pages">microfibers</a> exhibit exceptional performance in terms of cell recruitment, blood cell coagulation, and <a href="https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/hemostasis" title="Learn more about hemostasis from ScienceDirect's AI-generated Topic Pages">hemostasis</a>. The inclusion of a dodecyl carbon chain and amino groups in alkyl-chitosan imparts remarkable <a href="https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/antimicrobial-activity" title="Learn more about antimicrobial properties from ScienceDirect's AI-generated Topic Pages">antimicrobial properties</a> by anchoring to bacteria, complemented by potent <a href="https://www.sciencedirect.com/topics/chemistry/antibacterial" title="Learn more about antibacterial effects from ScienceDirect's AI-generated Topic Pages">antibacterial effects</a> of encapsulated <a href="https://www.sciencedirect.com/topics/physics-and-astronomy/silver-nanoparticle" title="Learn more about silver nanoparticles from ScienceDirect's AI-generated Topic Pages">silver nanoparticles</a>. Moreover, <a href="https://www.sciencedirect.com/topics/physics-and-astronomy/microfiber" title="Learn more about microfibers from ScienceDirect's AI-generated Topic Pages">microfibers</a> can load bioactive drugs like <a href="https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/epidermal-growth-factor" title="Learn more about epidermal growth factor from ScienceDirect's AI-generated Topic Pages">epidermal growth factor</a> (EGF), preserving their activity and enhancing therapeutic effects during <a href="https://www.sciencedirect.com/topics/materials-science/cell-proliferation" title="Learn more about cell proliferation from ScienceDirect's AI-generated Topic Pages">cell proliferation</a> and tissue remodeling. With these sequential functions to guide the whole-stage wound healing, this work offers a versatile and robust paradigm for comprehensive wound treatment, holding great potential for optimal healing outcomes.<br></p> | - |
dc.language | eng | - |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Colloids and Surfaces B: Biointerfaces | - |
dc.subject | All-aqueous microfluidics | - |
dc.subject | Aqueous-two phase system | - |
dc.subject | Interfacial coacervation | - |
dc.subject | Microfibers | - |
dc.subject | Wound healing | - |
dc.title | All-aqueous microfluidic printing of multifunctional bioactive microfibers promote whole-stage wound healing | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.colsurfb.2023.113720 | - |
dc.identifier.scopus | eid_2-s2.0-85181084159 | - |
dc.identifier.volume | 234 | - |
dc.identifier.eissn | 1873-4367 | - |
dc.identifier.isi | WOS:001165821500001 | - |
dc.identifier.issnl | 0927-7765 | - |