File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.cell.2023.02.018
- Scopus: eid_2-s2.0-85150862475
- PMID: 37001506
- WOS: WOS:001037039300001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models
Title | The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models |
---|---|
Authors | Rozowsky, JGao, JHBorsari, BYang, YTGaleev, TGursoy, GEpstein, CBXiong, KXu, JRLi, TXLiu, JYu, KYBerthel, AChen, ZLNavarro, FSun, MSWright, JChang, JSCameron, CJFShoresh, NGaskell, EDrenkow, JAdrian, JAganezov, SAguet, FBalderrama-Gutierrez, GBanskota, SCorona, GBChee, SChhetri, SBMartins, GCCDanyko, CDavis, CAFarid, DFarrell, NPGabdank, IGofin, YGorkin, DUGu, MTHecht, VHitz, BCIssner, RJiang, YZKirsche, MKong, XMLam, BRLi, STLi, BLi, XQLin, KZLuo, RBMackiewicz, MMeng, RMoore, JEMudge, JNelson, NNusbaum, CPopov, IPratt, HEQiu, YJRamakrishnan, SRaymond, JSalichos, LScavelli, ASchreiber, JMSedlazeck, FJSee, LHSherman, RMShi, XShi, MYSloan, CAStrattan, JSTan, ZTanaka, FYVlasova, AWang, JWerner, JWilliams, BXu, MYan, CFYu, LZaleski, CZhang, JArdlie, KCherry, JMMendenhall, EMNoble, WSWeng, ZPLevine, MEDobin, AWold, BMortazavi, ARen, BGillis, JMyers, RMSnyder, MPChoudhary, JMilosavljevic, ASchatz, MCBernstein, BEGuigo, RGingeras, TRGerstein, M |
Keywords | allele-specific activity ENCODE eQTLs functional epigenomes functional genomics genome annotations GTEx personal genome predictive models structural variants tissue specificity transformer model |
Issue Date | 30-Mar-2023 |
Publisher | Elsevier |
Citation | Cell, 2023, v. 186, n. 7, p. 1493-+ How to Cite? |
Abstract | Understanding how genetic variants impact molecular phenotypes is a key goal of functional genomics, currently hindered by reliance on a single haploid reference genome. Here, we present the EN-TEx resource of 1,635 open-access datasets from four donors (-30 tissues 3 -15 assays). The datasets are mapped to matched, diploid genomes with long-read phasing and structural variants, instantiating a catalog of >1 million allele-specific loci. These loci exhibit coordinated activity along haplotypes and are less conserved than corresponding, non-allele-specific ones. Surprisingly, a deep-learning transformer model can predict the allele specific activity based only on local nucleotide-sequence context, highlighting the importance of transcription-factor-binding motifs particularly sensitive to variants. Furthermore, combining EN-TEx with existing genome annotations reveals strong associations between allele-specific and GWAS loci. It also enables models for transferring known eQTLs to difficult-to-profile tissues (e.g., from skin to heart). Overall, ENTEx provides rich data and generalizable models for more accurate personal functional genomics. |
Persistent Identifier | http://hdl.handle.net/10722/340461 |
ISSN | 2023 Impact Factor: 45.5 2023 SCImago Journal Rankings: 24.342 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rozowsky, J | - |
dc.contributor.author | Gao, JH | - |
dc.contributor.author | Borsari, B | - |
dc.contributor.author | Yang, YT | - |
dc.contributor.author | Galeev, T | - |
dc.contributor.author | Gursoy, G | - |
dc.contributor.author | Epstein, CB | - |
dc.contributor.author | Xiong, K | - |
dc.contributor.author | Xu, JR | - |
dc.contributor.author | Li, TX | - |
dc.contributor.author | Liu, J | - |
dc.contributor.author | Yu, KY | - |
dc.contributor.author | Berthel, A | - |
dc.contributor.author | Chen, ZL | - |
dc.contributor.author | Navarro, F | - |
dc.contributor.author | Sun, MS | - |
dc.contributor.author | Wright, J | - |
dc.contributor.author | Chang, JS | - |
dc.contributor.author | Cameron, CJF | - |
dc.contributor.author | Shoresh, N | - |
dc.contributor.author | Gaskell, E | - |
dc.contributor.author | Drenkow, J | - |
dc.contributor.author | Adrian, J | - |
dc.contributor.author | Aganezov, S | - |
dc.contributor.author | Aguet, F | - |
dc.contributor.author | Balderrama-Gutierrez, G | - |
dc.contributor.author | Banskota, S | - |
dc.contributor.author | Corona, GB | - |
dc.contributor.author | Chee, S | - |
dc.contributor.author | Chhetri, SB | - |
dc.contributor.author | Martins, GCC | - |
dc.contributor.author | Danyko, C | - |
dc.contributor.author | Davis, CA | - |
dc.contributor.author | Farid, D | - |
dc.contributor.author | Farrell, NP | - |
dc.contributor.author | Gabdank, I | - |
dc.contributor.author | Gofin, Y | - |
dc.contributor.author | Gorkin, DU | - |
dc.contributor.author | Gu, MT | - |
dc.contributor.author | Hecht, V | - |
dc.contributor.author | Hitz, BC | - |
dc.contributor.author | Issner, R | - |
dc.contributor.author | Jiang, YZ | - |
dc.contributor.author | Kirsche, M | - |
dc.contributor.author | Kong, XM | - |
dc.contributor.author | Lam, BR | - |
dc.contributor.author | Li, ST | - |
dc.contributor.author | Li, B | - |
dc.contributor.author | Li, XQ | - |
dc.contributor.author | Lin, KZ | - |
dc.contributor.author | Luo, RB | - |
dc.contributor.author | Mackiewicz, M | - |
dc.contributor.author | Meng, R | - |
dc.contributor.author | Moore, JE | - |
dc.contributor.author | Mudge, J | - |
dc.contributor.author | Nelson, N | - |
dc.contributor.author | Nusbaum, C | - |
dc.contributor.author | Popov, I | - |
dc.contributor.author | Pratt, HE | - |
dc.contributor.author | Qiu, YJ | - |
dc.contributor.author | Ramakrishnan, S | - |
dc.contributor.author | Raymond, J | - |
dc.contributor.author | Salichos, L | - |
dc.contributor.author | Scavelli, A | - |
dc.contributor.author | Schreiber, JM | - |
dc.contributor.author | Sedlazeck, FJ | - |
dc.contributor.author | See, LH | - |
dc.contributor.author | Sherman, RM | - |
dc.contributor.author | Shi, X | - |
dc.contributor.author | Shi, MY | - |
dc.contributor.author | Sloan, CA | - |
dc.contributor.author | Strattan, JS | - |
dc.contributor.author | Tan, Z | - |
dc.contributor.author | Tanaka, FY | - |
dc.contributor.author | Vlasova, A | - |
dc.contributor.author | Wang, J | - |
dc.contributor.author | Werner, J | - |
dc.contributor.author | Williams, B | - |
dc.contributor.author | Xu, M | - |
dc.contributor.author | Yan, CF | - |
dc.contributor.author | Yu, L | - |
dc.contributor.author | Zaleski, C | - |
dc.contributor.author | Zhang, J | - |
dc.contributor.author | Ardlie, K | - |
dc.contributor.author | Cherry, JM | - |
dc.contributor.author | Mendenhall, EM | - |
dc.contributor.author | Noble, WS | - |
dc.contributor.author | Weng, ZP | - |
dc.contributor.author | Levine, ME | - |
dc.contributor.author | Dobin, A | - |
dc.contributor.author | Wold, B | - |
dc.contributor.author | Mortazavi, A | - |
dc.contributor.author | Ren, B | - |
dc.contributor.author | Gillis, J | - |
dc.contributor.author | Myers, RM | - |
dc.contributor.author | Snyder, MP | - |
dc.contributor.author | Choudhary, J | - |
dc.contributor.author | Milosavljevic, A | - |
dc.contributor.author | Schatz, MC | - |
dc.contributor.author | Bernstein, BE | - |
dc.contributor.author | Guigo, R | - |
dc.contributor.author | Gingeras, TR | - |
dc.contributor.author | Gerstein, M | - |
dc.date.accessioned | 2024-03-11T10:44:49Z | - |
dc.date.available | 2024-03-11T10:44:49Z | - |
dc.date.issued | 2023-03-30 | - |
dc.identifier.citation | Cell, 2023, v. 186, n. 7, p. 1493-+ | - |
dc.identifier.issn | 0092-8674 | - |
dc.identifier.uri | http://hdl.handle.net/10722/340461 | - |
dc.description.abstract | <p>Understanding how genetic variants impact molecular phenotypes is a key goal of functional genomics, currently hindered by reliance on a single haploid reference genome. Here, we present the EN-TEx resource of 1,635 open-access datasets from four donors (-30 tissues 3 -15 assays). The datasets are mapped to matched, diploid genomes with long-read phasing and structural variants, instantiating a catalog of >1 million allele-specific loci. These loci exhibit coordinated activity along haplotypes and are less conserved than corresponding, non-allele-specific ones. Surprisingly, a deep-learning transformer model can predict the allele specific activity based only on local nucleotide-sequence context, highlighting the importance of transcription-factor-binding motifs particularly sensitive to variants. Furthermore, combining EN-TEx with existing genome annotations reveals strong associations between allele-specific and GWAS loci. It also enables models for transferring known eQTLs to difficult-to-profile tissues (e.g., from skin to heart). Overall, ENTEx provides rich data and generalizable models for more accurate personal functional genomics.</p> | - |
dc.language | eng | - |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Cell | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | allele-specific activity | - |
dc.subject | ENCODE | - |
dc.subject | eQTLs | - |
dc.subject | functional epigenomes | - |
dc.subject | functional genomics | - |
dc.subject | genome annotations | - |
dc.subject | GTEx | - |
dc.subject | personal genome | - |
dc.subject | predictive models | - |
dc.subject | structural variants | - |
dc.subject | tissue specificity | - |
dc.subject | transformer model | - |
dc.title | The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.cell.2023.02.018 | - |
dc.identifier.pmid | 37001506 | - |
dc.identifier.scopus | eid_2-s2.0-85150862475 | - |
dc.identifier.volume | 186 | - |
dc.identifier.issue | 7 | - |
dc.identifier.spage | 1493 | - |
dc.identifier.epage | + | - |
dc.identifier.eissn | 1097-4172 | - |
dc.identifier.isi | WOS:001037039300001 | - |
dc.publisher.place | CAMBRIDGE | - |
dc.identifier.issnl | 0092-8674 | - |