File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Universal sums of generalized heptagonal numbers

TitleUniversal sums of generalized heptagonal numbers
Authors
KeywordsDiophantine equations
Quadratic forms
Sums of polygonal numbers
Theta functions
Issue Date1-Aug-2023
PublisherElsevier
Citation
Journal of Number Theory, 2023, v. 249, p. 500-536 How to Cite?
Abstract

In this paper, we consider representations of integers as sums of heptagonal numbers with a prescribed number of repeats of each heptagonal number appearing in the sum. In particular, we investigate the classification of such sums which are universal, i.e., those that represent every positive integer. We prove an explicit finite bound such that a given sum is universal if and only if it represents positive integer up to the given bound.



Persistent Identifierhttp://hdl.handle.net/10722/340885
ISSN
2023 Impact Factor: 0.6
2023 SCImago Journal Rankings: 0.780
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorKamaraj, Ramanujam-
dc.contributor.authorKane, Ben-
dc.contributor.authorOishi-Tomiyasu, Ryoko-
dc.date.accessioned2024-03-11T10:48:01Z-
dc.date.available2024-03-11T10:48:01Z-
dc.date.issued2023-08-01-
dc.identifier.citationJournal of Number Theory, 2023, v. 249, p. 500-536-
dc.identifier.issn0022-314X-
dc.identifier.urihttp://hdl.handle.net/10722/340885-
dc.description.abstract<p>In this paper, we consider representations of integers as sums of heptagonal numbers with a prescribed number of repeats of each heptagonal number appearing in the sum. In particular, we investigate the classification of such sums which are universal, i.e., those that represent every positive integer. We prove an explicit finite bound such that a given sum is universal if and only if it represents positive integer up to the given bound.</p><p><br></p>-
dc.languageeng-
dc.publisherElsevier-
dc.relation.ispartofJournal of Number Theory-
dc.subjectDiophantine equations-
dc.subjectQuadratic forms-
dc.subjectSums of polygonal numbers-
dc.subjectTheta functions-
dc.titleUniversal sums of generalized heptagonal numbers-
dc.typeArticle-
dc.identifier.doi10.1016/j.jnt.2023.02.003-
dc.identifier.scopuseid_2-s2.0-85151902000-
dc.identifier.volume249-
dc.identifier.spage500-
dc.identifier.epage536-
dc.identifier.eissn1096-1658-
dc.identifier.isiWOS:000982504700001-
dc.identifier.issnl0022-314X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats