File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jnt.2023.02.003
- Scopus: eid_2-s2.0-85151902000
- WOS: WOS:000982504700001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Universal sums of generalized heptagonal numbers
Title | Universal sums of generalized heptagonal numbers |
---|---|
Authors | |
Keywords | Diophantine equations Quadratic forms Sums of polygonal numbers Theta functions |
Issue Date | 1-Aug-2023 |
Publisher | Elsevier |
Citation | Journal of Number Theory, 2023, v. 249, p. 500-536 How to Cite? |
Abstract | In this paper, we consider representations of integers as sums of heptagonal numbers with a prescribed number of repeats of each heptagonal number appearing in the sum. In particular, we investigate the classification of such sums which are universal, i.e., those that represent every positive integer. We prove an explicit finite bound such that a given sum is universal if and only if it represents positive integer up to the given bound. |
Persistent Identifier | http://hdl.handle.net/10722/340885 |
ISSN | 2023 Impact Factor: 0.6 2023 SCImago Journal Rankings: 0.780 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kamaraj, Ramanujam | - |
dc.contributor.author | Kane, Ben | - |
dc.contributor.author | Oishi-Tomiyasu, Ryoko | - |
dc.date.accessioned | 2024-03-11T10:48:01Z | - |
dc.date.available | 2024-03-11T10:48:01Z | - |
dc.date.issued | 2023-08-01 | - |
dc.identifier.citation | Journal of Number Theory, 2023, v. 249, p. 500-536 | - |
dc.identifier.issn | 0022-314X | - |
dc.identifier.uri | http://hdl.handle.net/10722/340885 | - |
dc.description.abstract | <p>In this paper, we consider representations of integers as sums of heptagonal numbers with a prescribed number of repeats of each heptagonal number appearing in the sum. In particular, we investigate the classification of such sums which are universal, i.e., those that represent every positive integer. We prove an explicit finite bound such that a given sum is universal if and only if it represents positive integer up to the given bound.</p><p><br></p> | - |
dc.language | eng | - |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Journal of Number Theory | - |
dc.subject | Diophantine equations | - |
dc.subject | Quadratic forms | - |
dc.subject | Sums of polygonal numbers | - |
dc.subject | Theta functions | - |
dc.title | Universal sums of generalized heptagonal numbers | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.jnt.2023.02.003 | - |
dc.identifier.scopus | eid_2-s2.0-85151902000 | - |
dc.identifier.volume | 249 | - |
dc.identifier.spage | 500 | - |
dc.identifier.epage | 536 | - |
dc.identifier.eissn | 1096-1658 | - |
dc.identifier.isi | WOS:000982504700001 | - |
dc.identifier.issnl | 0022-314X | - |