File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1090/tran/8885
- Scopus: eid_2-s2.0-85171877234
- WOS: WOS:000995445900001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Distribution of moments of Hurwitz class numbers in arithmetic progressions and holomorphic projection
Title | Distribution of moments of Hurwitz class numbers in arithmetic progressions and holomorphic projection |
---|---|
Authors | |
Keywords | elliptic curves Holomorphic projection Hurwitz class numbers trace of Frobenius |
Issue Date | 1-Aug-2023 |
Publisher | American Mathematical Society |
Citation | Transactions of the American Mathematical Society, 2023, v. 376, n. 8, p. 5503-5519 How to Cite? |
Abstract | In this paper, we study moments of Hurwitz class numbers associated to imaginary quadratic orders restricted into fixed arithmetic progressions. In particular, we fix � in an arithmetic progression: $t\eqjiv m\pmod{M}$�≡� (mod�) and consider the ratio of the 2k2�-th moment to the zeroeth moment for $H(4n-t^2)$�(4�−�2)as one varies $n$�. |
Persistent Identifier | http://hdl.handle.net/10722/340889 |
ISSN | 2023 Impact Factor: 1.2 2023 SCImago Journal Rankings: 1.581 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kane, Ben | - |
dc.contributor.author | Pujahari, Sudhir | - |
dc.date.accessioned | 2024-03-11T10:48:03Z | - |
dc.date.available | 2024-03-11T10:48:03Z | - |
dc.date.issued | 2023-08-01 | - |
dc.identifier.citation | Transactions of the American Mathematical Society, 2023, v. 376, n. 8, p. 5503-5519 | - |
dc.identifier.issn | 0002-9947 | - |
dc.identifier.uri | http://hdl.handle.net/10722/340889 | - |
dc.description.abstract | <p>In this paper, we study moments of Hurwitz class numbers associated to imaginary quadratic orders restricted into fixed arithmetic progressions. In particular, we fix � in an arithmetic progression: $t\eqjiv m\pmod{M}$�≡� (mod�) and consider the ratio of the 2k2�-th moment to the zeroeth moment for $H(4n-t^2)$�(4�−�2)as one varies $n$�. <br></p> | - |
dc.language | eng | - |
dc.publisher | American Mathematical Society | - |
dc.relation.ispartof | Transactions of the American Mathematical Society | - |
dc.subject | elliptic curves | - |
dc.subject | Holomorphic projection | - |
dc.subject | Hurwitz class numbers | - |
dc.subject | trace of Frobenius | - |
dc.title | Distribution of moments of Hurwitz class numbers in arithmetic progressions and holomorphic projection | - |
dc.type | Article | - |
dc.identifier.doi | 10.1090/tran/8885 | - |
dc.identifier.scopus | eid_2-s2.0-85171877234 | - |
dc.identifier.volume | 376 | - |
dc.identifier.issue | 8 | - |
dc.identifier.spage | 5503 | - |
dc.identifier.epage | 5519 | - |
dc.identifier.eissn | 1088-6850 | - |
dc.identifier.isi | WOS:000995445900001 | - |
dc.identifier.issnl | 0002-9947 | - |