File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1137/140981575
- Scopus: eid_2-s2.0-84960326461
- WOS: WOS:000371229000006
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Clustering under perturbation resilience
Title | Clustering under perturbation resilience |
---|---|
Authors | |
Keywords | Clustering K-median clustering Min-sum clustering Perturbation resilience |
Issue Date | 2016 |
Citation | SIAM Journal on Computing, 2016, v. 45, n. 1, p. 102-155 How to Cite? |
Abstract | Motivated by the fact that distances between data points in many real-world clustering instances are often based on heuristic measures, Bilu and Linial [Proceedings of the Symposium on Innovations in Computer Science, 2010] proposed analyzing objective based clustering problems under the assumption that the optimum clustering to the objective is preserved under small multiplicative perturbations to distances between points. The hope is that by exploiting the structure in such instances, one can overcome worst case hardness results. In this paper, we provide several results within this framework. For center-based objectives, we present an algorithm that can optimally cluster instances resilient to perturbations of factor (1 + √2), solving an open problem of Awasthi, Blum, and Sheffet [Proceedings of the IEEE Annual Symposium on Foundations of Computer Science, 2010]. For k-median, a center-based objective of special interest, we additionally give algorithms for a more relaxed assumption in which we allow the optimal solution to change in a small fraction of the points after perturbation. We give the first bounds known for k-median under this more realistic and more general assumption. We also provide positive results for min-sum clustering, which is typically a harder objective than center-based objectives from an approximability standpoint. Our algorithms are based on new linkage criteria that may be of independent interest. Additionally, we give sublinear-time algorithms, showing algorithms that can return an implicit clustering from access to only a small random sample. |
Persistent Identifier | http://hdl.handle.net/10722/341173 |
ISSN | 2023 Impact Factor: 1.2 2023 SCImago Journal Rankings: 2.143 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Balcan, Maria Florina | - |
dc.contributor.author | Liang, Yingyu | - |
dc.date.accessioned | 2024-03-13T08:40:44Z | - |
dc.date.available | 2024-03-13T08:40:44Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | SIAM Journal on Computing, 2016, v. 45, n. 1, p. 102-155 | - |
dc.identifier.issn | 0097-5397 | - |
dc.identifier.uri | http://hdl.handle.net/10722/341173 | - |
dc.description.abstract | Motivated by the fact that distances between data points in many real-world clustering instances are often based on heuristic measures, Bilu and Linial [Proceedings of the Symposium on Innovations in Computer Science, 2010] proposed analyzing objective based clustering problems under the assumption that the optimum clustering to the objective is preserved under small multiplicative perturbations to distances between points. The hope is that by exploiting the structure in such instances, one can overcome worst case hardness results. In this paper, we provide several results within this framework. For center-based objectives, we present an algorithm that can optimally cluster instances resilient to perturbations of factor (1 + √2), solving an open problem of Awasthi, Blum, and Sheffet [Proceedings of the IEEE Annual Symposium on Foundations of Computer Science, 2010]. For k-median, a center-based objective of special interest, we additionally give algorithms for a more relaxed assumption in which we allow the optimal solution to change in a small fraction of the points after perturbation. We give the first bounds known for k-median under this more realistic and more general assumption. We also provide positive results for min-sum clustering, which is typically a harder objective than center-based objectives from an approximability standpoint. Our algorithms are based on new linkage criteria that may be of independent interest. Additionally, we give sublinear-time algorithms, showing algorithms that can return an implicit clustering from access to only a small random sample. | - |
dc.language | eng | - |
dc.relation.ispartof | SIAM Journal on Computing | - |
dc.subject | Clustering | - |
dc.subject | K-median clustering | - |
dc.subject | Min-sum clustering | - |
dc.subject | Perturbation resilience | - |
dc.title | Clustering under perturbation resilience | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1137/140981575 | - |
dc.identifier.scopus | eid_2-s2.0-84960326461 | - |
dc.identifier.volume | 45 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 102 | - |
dc.identifier.epage | 155 | - |
dc.identifier.eissn | 1095-7111 | - |
dc.identifier.isi | WOS:000371229000006 | - |