File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Weighing the local dark matter with RAVE red clump stars

TitleWeighing the local dark matter with RAVE red clump stars
Authors
KeywordsGalaxies: kinematics and dynamics
Issue Date14-Nov-2014
PublisherEDP Sciences
Citation
Astronomy & Astrophysics, 2014, v. 571 How to Cite?
AbstractWe determine the Galactic potential in the solar neigbourhood from RAVE observations. We select red clump stars for which accurate distances, radial velocities, and metallicities have been measured. Combined with data from the 2MASS and UCAC catalogues, we build a sample of ~4600 red clump stars within a cylinder of 500 pc radius oriented in the direction of the South Galactic Pole, in the range of 200 pc to 2000 pc distances. We deduce the vertical force and the total mass density distribution up to 2 kpc away from the Galactic plane by fitting a distribution function depending explicitly on three isolating integrals of the motion in a separable potential locally representing the Galactic one with four free parameters. Because of the deep extension of our sample, we can determine nearly independently the dark matter mass density and the baryonic disc surface mass density. We find (i) at 1 kpc Kz/(2πG) = 68.5 ± 1.0 M pc-2; and (ii) at 2 kpc Kz/(2πG) = 96.9 ± 2.2 M pc-2. Assuming the solar Galactic radius at R0 = 8.5 kpc, we deduce the local dark matter density ρDM(z = 0) = 0.0143 ± 0.0011 M pc-3 = 0.542 ± 0.042 Gev cm-3 and the baryonic surface mass density Σbar = 44.4 ± 4.1 M pc-2. Our results are in agreement with previously published Kz determinations up to 1 kpc, while the extension to 2 kpc shows some evidence for an unexpectedly large amount of dark matter. A flattening of the dark halo of order 0.8 can produce such a high local density in combination with a circular velocity of 240 km s-1. It could also be consistent with a spherical cored dark matter profile whose density does not drop sharply with radius. Another explanation, allowing for a lower circular velocity, could be the presence of a secondary dark component, a very thick disc resulting either from the deposit of dark matter from the accretion of multiple small dwarf galaxies, or from the presence of an effective "phantom" thick disc in the context of effective galactic-scale modifications of gravity.
Persistent Identifierhttp://hdl.handle.net/10722/341939
ISSN
2023 Impact Factor: 5.4
2023 SCImago Journal Rankings: 1.896
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorBienaymé, O-
dc.contributor.authorFamaey, B-
dc.contributor.authorSiebert, A-
dc.contributor.authorFreeman, KC-
dc.contributor.authorGibson, BK-
dc.contributor.authorGilmore, G-
dc.contributor.authorGrebel, EK-
dc.contributor.authorBland-Hawthorn, J-
dc.contributor.authorKordopatis, G-
dc.contributor.authorMunari, U-
dc.contributor.authorNavarro, JF-
dc.contributor.authorParker, Q-
dc.contributor.authorReid, W-
dc.contributor.authorSeabroke, GM-
dc.contributor.authorSiviero, A-
dc.contributor.authorSteinmetz, M-
dc.contributor.authorWatson, F-
dc.contributor.authorWyse, RFG-
dc.contributor.authorZwitter, T-
dc.date.accessioned2024-03-26T05:38:22Z-
dc.date.available2024-03-26T05:38:22Z-
dc.date.issued2014-11-14-
dc.identifier.citationAstronomy & Astrophysics, 2014, v. 571-
dc.identifier.issn0004-6361-
dc.identifier.urihttp://hdl.handle.net/10722/341939-
dc.description.abstractWe determine the Galactic potential in the solar neigbourhood from RAVE observations. We select red clump stars for which accurate distances, radial velocities, and metallicities have been measured. Combined with data from the 2MASS and UCAC catalogues, we build a sample of ~4600 red clump stars within a cylinder of 500 pc radius oriented in the direction of the South Galactic Pole, in the range of 200 pc to 2000 pc distances. We deduce the vertical force and the total mass density distribution up to 2 kpc away from the Galactic plane by fitting a distribution function depending explicitly on three isolating integrals of the motion in a separable potential locally representing the Galactic one with four free parameters. Because of the deep extension of our sample, we can determine nearly independently the dark matter mass density and the baryonic disc surface mass density. We find (i) at 1 kpc Kz/(2πG) = 68.5 ± 1.0 M pc-2; and (ii) at 2 kpc Kz/(2πG) = 96.9 ± 2.2 M pc-2. Assuming the solar Galactic radius at R0 = 8.5 kpc, we deduce the local dark matter density ρDM(z = 0) = 0.0143 ± 0.0011 M pc-3 = 0.542 ± 0.042 Gev cm-3 and the baryonic surface mass density Σbar = 44.4 ± 4.1 M pc-2. Our results are in agreement with previously published Kz determinations up to 1 kpc, while the extension to 2 kpc shows some evidence for an unexpectedly large amount of dark matter. A flattening of the dark halo of order 0.8 can produce such a high local density in combination with a circular velocity of 240 km s-1. It could also be consistent with a spherical cored dark matter profile whose density does not drop sharply with radius. Another explanation, allowing for a lower circular velocity, could be the presence of a secondary dark component, a very thick disc resulting either from the deposit of dark matter from the accretion of multiple small dwarf galaxies, or from the presence of an effective "phantom" thick disc in the context of effective galactic-scale modifications of gravity.-
dc.languageeng-
dc.publisherEDP Sciences-
dc.relation.ispartofAstronomy & Astrophysics-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectGalaxies: kinematics and dynamics-
dc.titleWeighing the local dark matter with RAVE red clump stars-
dc.typeArticle-
dc.identifier.doi10.1051/0004-6361/201424478-
dc.identifier.scopuseid_2-s2.0-84926241919-
dc.identifier.volume571-
dc.identifier.eissn1432-0746-
dc.identifier.isiWOS:000345282600081-
dc.identifier.issnl0004-6361-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats