File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s11139-022-00590-4
- Scopus: eid_2-s2.0-85131567026
- WOS: WOS:000808416800001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: On Selberg’s limit theorem for L-functions over a family of GL(n) Hecke–Maass cusp forms
Title | On Selberg’s limit theorem for L-functions over a family of GL(n) Hecke–Maass cusp forms |
---|---|
Authors | |
Keywords | Automorphic forms for GL(n) L-functions Selberg’s limit theorem |
Issue Date | 1-Dec-2022 |
Publisher | Springer |
Citation | Ramanujan Journal, 2022, v. 59, n. 4, p. 1171-1195 How to Cite? |
Abstract | The Selberg’s limit theorem asserts that under an appropriate normalization, the logarithm of the Riemann zeta-function logζ(12+it) on the critical line is normally distributed. A spectral analog on the imaginary part of logL(12+it,ϕ) over a family of GL(2) (resp. GL(3)) Hecke–Maass cusp forms ϕ is developed by Hejhal and Luo [4] (resp. Liu and Liu [9]) using the Kuznetsov trace formula. In this paper, we study the case of GL(n), n≥ 3 , with the automorphic Plancherel density theorem of Matz and Templier. |
Persistent Identifier | http://hdl.handle.net/10722/342129 |
ISSN | 2023 Impact Factor: 0.6 2023 SCImago Journal Rankings: 0.712 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, G | - |
dc.contributor.author | Lau, YK | - |
dc.contributor.author | Wang, Y | - |
dc.date.accessioned | 2024-04-09T07:29:57Z | - |
dc.date.available | 2024-04-09T07:29:57Z | - |
dc.date.issued | 2022-12-01 | - |
dc.identifier.citation | Ramanujan Journal, 2022, v. 59, n. 4, p. 1171-1195 | - |
dc.identifier.issn | 1382-4090 | - |
dc.identifier.uri | http://hdl.handle.net/10722/342129 | - |
dc.description.abstract | The Selberg’s limit theorem asserts that under an appropriate normalization, the logarithm of the Riemann zeta-function logζ(12+it) on the critical line is normally distributed. A spectral analog on the imaginary part of logL(12+it,ϕ) over a family of GL(2) (resp. GL(3)) Hecke–Maass cusp forms ϕ is developed by Hejhal and Luo [4] (resp. Liu and Liu [9]) using the Kuznetsov trace formula. In this paper, we study the case of GL(n), n≥ 3 , with the automorphic Plancherel density theorem of Matz and Templier. | - |
dc.language | eng | - |
dc.publisher | Springer | - |
dc.relation.ispartof | Ramanujan Journal | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | Automorphic forms for GL(n) | - |
dc.subject | L-functions | - |
dc.subject | Selberg’s limit theorem | - |
dc.title | On Selberg’s limit theorem for L-functions over a family of GL(n) Hecke–Maass cusp forms | - |
dc.type | Article | - |
dc.identifier.doi | 10.1007/s11139-022-00590-4 | - |
dc.identifier.scopus | eid_2-s2.0-85131567026 | - |
dc.identifier.volume | 59 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 1171 | - |
dc.identifier.epage | 1195 | - |
dc.identifier.eissn | 1572-9303 | - |
dc.identifier.isi | WOS:000808416800001 | - |
dc.identifier.issnl | 1382-4090 | - |