File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: On Selberg’s limit theorem for L-functions over a family of GL(n) Hecke–Maass cusp forms

TitleOn Selberg’s limit theorem for L-functions over a family of GL(n) Hecke–Maass cusp forms
Authors
KeywordsAutomorphic forms for GL(n)
L-functions
Selberg’s limit theorem
Issue Date1-Dec-2022
PublisherSpringer
Citation
Ramanujan Journal, 2022, v. 59, n. 4, p. 1171-1195 How to Cite?
AbstractThe Selberg’s limit theorem asserts that under an appropriate normalization, the logarithm of the Riemann zeta-function logζ(12+it) on the critical line is normally distributed. A spectral analog on the imaginary part of logL(12+it,ϕ) over a family of GL(2) (resp. GL(3)) Hecke–Maass cusp forms ϕ is developed by Hejhal and Luo [4] (resp. Liu and Liu [9]) using the Kuznetsov trace formula. In this paper, we study the case of GL(n), n≥ 3 , with the automorphic Plancherel density theorem of Matz and Templier.
Persistent Identifierhttp://hdl.handle.net/10722/342129
ISSN
2023 Impact Factor: 0.6
2023 SCImago Journal Rankings: 0.712
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorChen, G-
dc.contributor.authorLau, YK-
dc.contributor.authorWang, Y-
dc.date.accessioned2024-04-09T07:29:57Z-
dc.date.available2024-04-09T07:29:57Z-
dc.date.issued2022-12-01-
dc.identifier.citationRamanujan Journal, 2022, v. 59, n. 4, p. 1171-1195-
dc.identifier.issn1382-4090-
dc.identifier.urihttp://hdl.handle.net/10722/342129-
dc.description.abstractThe Selberg’s limit theorem asserts that under an appropriate normalization, the logarithm of the Riemann zeta-function logζ(12+it) on the critical line is normally distributed. A spectral analog on the imaginary part of logL(12+it,ϕ) over a family of GL(2) (resp. GL(3)) Hecke–Maass cusp forms ϕ is developed by Hejhal and Luo [4] (resp. Liu and Liu [9]) using the Kuznetsov trace formula. In this paper, we study the case of GL(n), n≥ 3 , with the automorphic Plancherel density theorem of Matz and Templier.-
dc.languageeng-
dc.publisherSpringer-
dc.relation.ispartofRamanujan Journal-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectAutomorphic forms for GL(n)-
dc.subjectL-functions-
dc.subjectSelberg’s limit theorem-
dc.titleOn Selberg’s limit theorem for L-functions over a family of GL(n) Hecke–Maass cusp forms-
dc.typeArticle-
dc.identifier.doi10.1007/s11139-022-00590-4-
dc.identifier.scopuseid_2-s2.0-85131567026-
dc.identifier.volume59-
dc.identifier.issue4-
dc.identifier.spage1171-
dc.identifier.epage1195-
dc.identifier.eissn1572-9303-
dc.identifier.isiWOS:000808416800001-
dc.identifier.issnl1382-4090-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats