File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1073/pnas.0712038105
- Scopus: eid_2-s2.0-41149099000
- PMID: 18252821
- WOS: WOS:000253261900062
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Symbiotic gut microbes modulate human metabolic phenotypes
Title | Symbiotic gut microbes modulate human metabolic phenotypes |
---|---|
Authors | Li, MinWang, BaohongZhang, MenghuiRantalainen, MattiasWang, ShengyueZhou, HaokuiZhang, YanShen, JianPang, XiaoyanZhang, MeilingWei, HuaChen, YuLu, HaifengZuo, JianSu, MingmingQiu, YunpingJia, WeiXiao, ChaoniSmith, Leon M.Yang, ShengliHolmes, ElaineTang, HuiruZhao, GuopingNicholson, Jeremy K.Li, LanjuanZhao, Liping |
Keywords | Covariation analysis Gut microbiota Metabonomics Metabotype Metagenomics |
Issue Date | 2008 |
Citation | Proceedings of the National Academy of Sciences of the United States of America, 2008, v. 105, n. 6, p. 2117-2122 How to Cite? |
Abstract | Humans have evolved intimate symbiotic relationships with a consortium of gut microbes (microbiome) and individual variations in the microbiome influence host health, may be implicated in disease etiology, and affect drug metabolism, toxicity, and efficacy. However, the molecular basis of these microbe-host interactions and the roles of individual bacterial species are obscure. We now demonstrate a"transgenomic" approach to link gut microbiome and metabolic phenotype (metabotype) variation. We have used a combination of spectroscopic, microbiomic, and multivariate statistical tools to analyze fecal and urinary samples from seven Chinese individuals (sampled twice) and to model the microbial-host metabolic connectivities. At the species level, we found structural differences in the Chinese family gut microbiomes and those reported for American volunteers, which is consistent with population microbial cometabolic differences reported in epidemiological studies. We also introduce the concept of functional metagenomics, defined as "the characterization of key functional members of the microbiome that most influence host metabolism and hence health." For example, Faecalibacterium prausnitzii population variation is associated with modulation of eight urinary metabolites of diverse structure, indicating that this species is a highly functionally active member of the microbiome, influencing numerous host pathways. Other species were identified showing different and varied metabolic interactions. Our approach for understanding the dynamic basis of host-microbiome symbiosis provides a foundation for the development of functional metagenomics as a probe of systemic effects of drugs and diet that are of relevance to personal and public health care solutions. © 2008 by The National Academy of Sciences of the USA. |
Persistent Identifier | http://hdl.handle.net/10722/342326 |
ISSN | 2023 Impact Factor: 9.4 2023 SCImago Journal Rankings: 3.737 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Min | - |
dc.contributor.author | Wang, Baohong | - |
dc.contributor.author | Zhang, Menghui | - |
dc.contributor.author | Rantalainen, Mattias | - |
dc.contributor.author | Wang, Shengyue | - |
dc.contributor.author | Zhou, Haokui | - |
dc.contributor.author | Zhang, Yan | - |
dc.contributor.author | Shen, Jian | - |
dc.contributor.author | Pang, Xiaoyan | - |
dc.contributor.author | Zhang, Meiling | - |
dc.contributor.author | Wei, Hua | - |
dc.contributor.author | Chen, Yu | - |
dc.contributor.author | Lu, Haifeng | - |
dc.contributor.author | Zuo, Jian | - |
dc.contributor.author | Su, Mingming | - |
dc.contributor.author | Qiu, Yunping | - |
dc.contributor.author | Jia, Wei | - |
dc.contributor.author | Xiao, Chaoni | - |
dc.contributor.author | Smith, Leon M. | - |
dc.contributor.author | Yang, Shengli | - |
dc.contributor.author | Holmes, Elaine | - |
dc.contributor.author | Tang, Huiru | - |
dc.contributor.author | Zhao, Guoping | - |
dc.contributor.author | Nicholson, Jeremy K. | - |
dc.contributor.author | Li, Lanjuan | - |
dc.contributor.author | Zhao, Liping | - |
dc.date.accessioned | 2024-04-17T07:02:59Z | - |
dc.date.available | 2024-04-17T07:02:59Z | - |
dc.date.issued | 2008 | - |
dc.identifier.citation | Proceedings of the National Academy of Sciences of the United States of America, 2008, v. 105, n. 6, p. 2117-2122 | - |
dc.identifier.issn | 0027-8424 | - |
dc.identifier.uri | http://hdl.handle.net/10722/342326 | - |
dc.description.abstract | Humans have evolved intimate symbiotic relationships with a consortium of gut microbes (microbiome) and individual variations in the microbiome influence host health, may be implicated in disease etiology, and affect drug metabolism, toxicity, and efficacy. However, the molecular basis of these microbe-host interactions and the roles of individual bacterial species are obscure. We now demonstrate a"transgenomic" approach to link gut microbiome and metabolic phenotype (metabotype) variation. We have used a combination of spectroscopic, microbiomic, and multivariate statistical tools to analyze fecal and urinary samples from seven Chinese individuals (sampled twice) and to model the microbial-host metabolic connectivities. At the species level, we found structural differences in the Chinese family gut microbiomes and those reported for American volunteers, which is consistent with population microbial cometabolic differences reported in epidemiological studies. We also introduce the concept of functional metagenomics, defined as "the characterization of key functional members of the microbiome that most influence host metabolism and hence health." For example, Faecalibacterium prausnitzii population variation is associated with modulation of eight urinary metabolites of diverse structure, indicating that this species is a highly functionally active member of the microbiome, influencing numerous host pathways. Other species were identified showing different and varied metabolic interactions. Our approach for understanding the dynamic basis of host-microbiome symbiosis provides a foundation for the development of functional metagenomics as a probe of systemic effects of drugs and diet that are of relevance to personal and public health care solutions. © 2008 by The National Academy of Sciences of the USA. | - |
dc.language | eng | - |
dc.relation.ispartof | Proceedings of the National Academy of Sciences of the United States of America | - |
dc.subject | Covariation analysis | - |
dc.subject | Gut microbiota | - |
dc.subject | Metabonomics | - |
dc.subject | Metabotype | - |
dc.subject | Metagenomics | - |
dc.title | Symbiotic gut microbes modulate human metabolic phenotypes | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1073/pnas.0712038105 | - |
dc.identifier.pmid | 18252821 | - |
dc.identifier.scopus | eid_2-s2.0-41149099000 | - |
dc.identifier.volume | 105 | - |
dc.identifier.issue | 6 | - |
dc.identifier.spage | 2117 | - |
dc.identifier.epage | 2122 | - |
dc.identifier.eissn | 1091-6490 | - |
dc.identifier.isi | WOS:000253261900062 | - |