File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Sex-dependent effects on gut microbiota regulate hepatic carcinogenic outcomes

TitleSex-dependent effects on gut microbiota regulate hepatic carcinogenic outcomes
Authors
Issue Date2017
Citation
Scientific Reports, 2017, v. 7, article no. 45232 How to Cite?
AbstractEmerging evidence points to a strong association between sex and gut microbiota, bile acids (BAs), and gastrointestinal cancers. Here, we investigated the mechanistic link between microbiota and hepatocellular carcinogenesis using a streptozotocin-high fat diet (STZ-HFD) induced nonalcoholic steatohepatitis-hepatocellular carcinoma (NASH-HCC) murine model and compared results for both sexes. STZ-HFD feeding induced a much higher incidence of HCC in male mice with substantially increased intrahepatic retention of hydrophobic BAs and decreased hepatic expression of tumor-suppressive microRNAs. Metagenomic analysis showed differences in gut microbiota involved in BA metabolism between normal male and female mice, and such differences were amplified when mice of both sexes were exposed to STZ-HFD. Treating STZ-HFD male mice with 2% cholestyramine led to significant improvement of hepatic BA retention, tumor-suppressive microRNA expressions, microbial gut communities, and prevention of HCC. Additionally the sex-dependent differences in BA profiles in the murine model can be correlated to the differential BA profiles between men and women during the development of HCC. These results uncover distinct male and female profiles for gut microbiota, BAs, and microRNAs that may contribute to sex-based disparity in liver carcinogenesis, and suggest new possibilities for preventing and controlling human obesity-related gastrointestinal cancers that often exhibit sex differences.
Persistent Identifierhttp://hdl.handle.net/10722/342536
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorXie, Guoxiang-
dc.contributor.authorWang, Xiaoning-
dc.contributor.authorZhao, Aihua-
dc.contributor.authorYan, Jingyu-
dc.contributor.authorChen, Wenlian-
dc.contributor.authorJiang, Runqiu-
dc.contributor.authorJi, Junfang-
dc.contributor.authorHuang, Fengjie-
dc.contributor.authorZhang, Yunjing-
dc.contributor.authorLei, Sha-
dc.contributor.authorGe, Kun-
dc.contributor.authorZheng, Xiaojiao-
dc.contributor.authorRajani, Cynthia-
dc.contributor.authorAlegado, Rosanna A.-
dc.contributor.authorLiu, Jiajian-
dc.contributor.authorLiu, Ping-
dc.contributor.authorNicholson, Jeremy-
dc.contributor.authorJia, Wei-
dc.date.accessioned2024-04-17T07:04:31Z-
dc.date.available2024-04-17T07:04:31Z-
dc.date.issued2017-
dc.identifier.citationScientific Reports, 2017, v. 7, article no. 45232-
dc.identifier.urihttp://hdl.handle.net/10722/342536-
dc.description.abstractEmerging evidence points to a strong association between sex and gut microbiota, bile acids (BAs), and gastrointestinal cancers. Here, we investigated the mechanistic link between microbiota and hepatocellular carcinogenesis using a streptozotocin-high fat diet (STZ-HFD) induced nonalcoholic steatohepatitis-hepatocellular carcinoma (NASH-HCC) murine model and compared results for both sexes. STZ-HFD feeding induced a much higher incidence of HCC in male mice with substantially increased intrahepatic retention of hydrophobic BAs and decreased hepatic expression of tumor-suppressive microRNAs. Metagenomic analysis showed differences in gut microbiota involved in BA metabolism between normal male and female mice, and such differences were amplified when mice of both sexes were exposed to STZ-HFD. Treating STZ-HFD male mice with 2% cholestyramine led to significant improvement of hepatic BA retention, tumor-suppressive microRNA expressions, microbial gut communities, and prevention of HCC. Additionally the sex-dependent differences in BA profiles in the murine model can be correlated to the differential BA profiles between men and women during the development of HCC. These results uncover distinct male and female profiles for gut microbiota, BAs, and microRNAs that may contribute to sex-based disparity in liver carcinogenesis, and suggest new possibilities for preventing and controlling human obesity-related gastrointestinal cancers that often exhibit sex differences.-
dc.languageeng-
dc.relation.ispartofScientific Reports-
dc.titleSex-dependent effects on gut microbiota regulate hepatic carcinogenic outcomes-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1038/srep45232-
dc.identifier.pmid28345673-
dc.identifier.scopuseid_2-s2.0-85016276220-
dc.identifier.volume7-
dc.identifier.spagearticle no. 45232-
dc.identifier.epagearticle no. 45232-
dc.identifier.eissn2045-2322-
dc.identifier.isiWOS:000397429100001-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats