File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
  • Find via Find It@HKUL
Supplementary

Article: Policy optimization by looking ahead for model-based offline reinforcement learning

TitlePolicy optimization by looking ahead for model-based offline reinforcement learning
Authors
Issue Date1-Mar-2024
PublisherIEEE Xplore
Citation
IEEE International Conference on Robotics and Automation (ICRA), 2024 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/344215
ISSN
2023 SCImago Journal Rankings: 1.620

 

DC FieldValueLanguage
dc.contributor.authorLiu, Yang-
dc.contributor.authorHofert, Jan Marius-
dc.date.accessioned2024-07-16T03:41:42Z-
dc.date.available2024-07-16T03:41:42Z-
dc.date.issued2024-03-01-
dc.identifier.citationIEEE International Conference on Robotics and Automation (ICRA), 2024-
dc.identifier.issn1050-4729-
dc.identifier.urihttp://hdl.handle.net/10722/344215-
dc.languageeng-
dc.publisherIEEE Xplore-
dc.relation.ispartofIEEE International Conference on Robotics and Automation (ICRA)-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titlePolicy optimization by looking ahead for model-based offline reinforcement learning-
dc.typeArticle-
dc.identifier.issnl1050-4729-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats