File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Background subtraction via coherent trajectory decomposition

TitleBackground subtraction via coherent trajectory decomposition
Authors
KeywordsBackground subtraction
Low-rank
Sparse
Trajectory
Issue Date2013
Citation
MM 2013 - Proceedings of the 2013 ACM Multimedia Conference, 2013, p. 545-548 How to Cite?
AbstractBackground subtraction, the task to detect moving object- s in a scene, is an important step in video analysis. In this paper, we propose an efficient background subtraction method based on coherent trajectory decomposition. We assume that the trajectories from background lie in a low-rank subspace, and foreground trajectories are sparse outliers in this background subspace. Meanwhile, the Markov Random Field (MRF) is used to encode the spatial coherency and trajectory consistency. With the low-rank decomposition and the MRF, our method can better handle videos with moving camera and obtain coherent foreground. Experimental results on a video dataset show our method achieves very competitive performance. Copyright © 2013 ACM.
Persistent Identifierhttp://hdl.handle.net/10722/345060

 

DC FieldValueLanguage
dc.contributor.authorRen, Zhixiang-
dc.contributor.authorChia, Liang Tien-
dc.contributor.authorRajan, Deepu-
dc.contributor.authorGao, Shenghua-
dc.date.accessioned2024-08-15T09:24:58Z-
dc.date.available2024-08-15T09:24:58Z-
dc.date.issued2013-
dc.identifier.citationMM 2013 - Proceedings of the 2013 ACM Multimedia Conference, 2013, p. 545-548-
dc.identifier.urihttp://hdl.handle.net/10722/345060-
dc.description.abstractBackground subtraction, the task to detect moving object- s in a scene, is an important step in video analysis. In this paper, we propose an efficient background subtraction method based on coherent trajectory decomposition. We assume that the trajectories from background lie in a low-rank subspace, and foreground trajectories are sparse outliers in this background subspace. Meanwhile, the Markov Random Field (MRF) is used to encode the spatial coherency and trajectory consistency. With the low-rank decomposition and the MRF, our method can better handle videos with moving camera and obtain coherent foreground. Experimental results on a video dataset show our method achieves very competitive performance. Copyright © 2013 ACM.-
dc.languageeng-
dc.relation.ispartofMM 2013 - Proceedings of the 2013 ACM Multimedia Conference-
dc.subjectBackground subtraction-
dc.subjectLow-rank-
dc.subjectSparse-
dc.subjectTrajectory-
dc.titleBackground subtraction via coherent trajectory decomposition-
dc.typeConference_Paper-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1145/2502081.2502144-
dc.identifier.scopuseid_2-s2.0-84887496983-
dc.identifier.spage545-
dc.identifier.epage548-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats