File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Enhanced thermoelectric performance of p-type Bi2Si2Te6 enabled via synergistically optimizing carrier concentration and suppressing bipolar effect

TitleEnhanced thermoelectric performance of p-type Bi2Si2Te6 enabled via synergistically optimizing carrier concentration and suppressing bipolar effect
Authors
KeywordsBand structure manipulation and bipolar effect
Carrier concentration optimization
Thermoelectrics
Issue Date28-Jul-2023
PublisherElsevier
Citation
Materials Today Physics, 2023, v. 37 How to Cite?
Abstract

Bipolar diffusion is regarded as an obstacle to improving thermoelectric performance because it dramatically deteriorates the thermopower and increases the thermal conductivity at high temperatures. Here, we propose two effective strategies, either substitution of Bi with Mn, or replacement of Si with Ge, to optimize the carrier concentration and suppress the bipolar effect in Bi2Si2Te6. The electrical resistivity is largely reduced and a compensation of the Seebeck coefficient by minority charge carriers is eliminated because of increased carrier concentration. Meanwhile, both Mn doping at Bi site and Ge alloying at Si site can achieve a larger DOS effective mass which is favorable to the Seebeck coefficient. Accordingly, the maximum power factor is considerably improved from 4.4 μW cm−1 K−2 for pristine Bi2Si2Te6 to 9.6 μW cm−1 K−2 for Bi1.97Mn0.03Si2Te6 and 9.2 μW cm−1 K−2 for Bi2Si1.8Ge0.2Te6. Furthermore, the lattice thermal conductivity is largely diminished by ∼40% at elevated temperatures, which is ascribed to the suppressed bipolar thermal conductivity and strengthened phonon scattering by extra substitutional point defects. As a result, a peak zT value of unity is achieved in both Bi1.98Mn0.02Si2Te6 and Bi2Si1.8Ge0.2Te6 at 773 K.


Persistent Identifierhttp://hdl.handle.net/10722/345897
ISSN
2023 Impact Factor: 10.0
2023 SCImago Journal Rankings: 2.304

 

DC FieldValueLanguage
dc.contributor.authorShen, D-
dc.contributor.authorCheng, R-
dc.contributor.authorWang, W-
dc.contributor.authorLi, H-
dc.contributor.authorChen, C-
dc.contributor.authorZhang, Q-
dc.contributor.authorChen, Y-
dc.date.accessioned2024-09-04T07:06:20Z-
dc.date.available2024-09-04T07:06:20Z-
dc.date.issued2023-07-28-
dc.identifier.citationMaterials Today Physics, 2023, v. 37-
dc.identifier.issn2542-5293-
dc.identifier.urihttp://hdl.handle.net/10722/345897-
dc.description.abstract<p>Bipolar diffusion is regarded as an obstacle to improving <a href="https://www.sciencedirect.com/topics/engineering/thermoelectrics" title="Learn more about thermoelectric from ScienceDirect's AI-generated Topic Pages">thermoelectric</a> performance because it dramatically deteriorates the thermopower and increases the <a href="https://www.sciencedirect.com/topics/physics-and-astronomy/thermal-conductivity" title="Learn more about thermal conductivity from ScienceDirect's AI-generated Topic Pages">thermal conductivity</a> at high temperatures. Here, we propose two effective strategies, either substitution of Bi with Mn, or replacement of Si with Ge, to optimize the carrier concentration and suppress the bipolar effect in Bi<sub>2</sub>Si<sub>2</sub>Te<sub>6</sub>. The electrical resistivity is largely reduced and a compensation of the <a href="https://www.sciencedirect.com/topics/engineering/seebeck-coefficient" title="Learn more about Seebeck coefficient from ScienceDirect's AI-generated Topic Pages">Seebeck coefficient</a> by minority charge carriers is eliminated because of increased carrier concentration. Meanwhile, both Mn doping at Bi site and Ge alloying at Si site can achieve a larger DOS effective mass which is favorable to the <a href="https://www.sciencedirect.com/topics/earth-and-planetary-sciences/seebeck-effect" title="Learn more about Seebeck coefficient from ScienceDirect's AI-generated Topic Pages">Seebeck coefficient</a>. Accordingly, the maximum power factor is considerably improved from 4.4 μW cm<sup>−1</sup> K<sup>−2</sup> for pristine Bi<sub>2</sub>Si<sub>2</sub>Te<sub>6</sub> to 9.6 μW cm<sup>−1</sup> K<sup>−2</sup> for Bi<sub>1.97</sub>Mn<sub>0.03</sub>Si<sub>2</sub>Te<sub>6</sub> and 9.2 μW cm<sup>−1</sup> K<sup>−2</sup> for Bi<sub>2</sub>Si<sub>1.8</sub>Ge<sub>0.2</sub>Te<sub>6</sub>. Furthermore, the lattice <a href="https://www.sciencedirect.com/topics/engineering/thermal-conductivity" title="Learn more about thermal conductivity from ScienceDirect's AI-generated Topic Pages">thermal conductivity</a> is largely diminished by ∼40% at elevated temperatures, which is ascribed to the suppressed bipolar <a href="https://www.sciencedirect.com/topics/earth-and-planetary-sciences/thermal-conductivity" title="Learn more about thermal conductivity from ScienceDirect's AI-generated Topic Pages">thermal conductivity</a> and strengthened <a href="https://www.sciencedirect.com/topics/physics-and-astronomy/phonon" title="Learn more about phonon from ScienceDirect's AI-generated Topic Pages">phonon</a> scattering by extra substitutional <a href="https://www.sciencedirect.com/topics/earth-and-planetary-sciences/point-defect" title="Learn more about point defects from ScienceDirect's AI-generated Topic Pages">point defects</a>. As a result, a peak <em>zT</em> value of unity is achieved in both Bi<sub>1.98</sub>Mn<sub>0.02</sub>Si<sub>2</sub>Te<sub>6</sub> and Bi<sub>2</sub>Si<sub>1.8</sub>Ge<sub>0.2</sub>Te<sub>6</sub> at 773 K.<br></p>-
dc.languageeng-
dc.publisherElsevier-
dc.relation.ispartofMaterials Today Physics-
dc.subjectBand structure manipulation and bipolar effect-
dc.subjectCarrier concentration optimization-
dc.subjectThermoelectrics-
dc.titleEnhanced thermoelectric performance of p-type Bi2Si2Te6 enabled via synergistically optimizing carrier concentration and suppressing bipolar effect-
dc.typeArticle-
dc.identifier.doi10.1016/j.mtphys.2023.101185-
dc.identifier.scopuseid_2-s2.0-85166640450-
dc.identifier.volume37-
dc.identifier.eissn2542-5293-
dc.identifier.issnl2542-5293-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats