File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma

TitleDeep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma
Authors
Issue Date14-Dec-2023
PublisherNature Portfolio
Citation
Nature Communications, 2023, v. 14, n. 1 How to Cite?
AbstractPrimary liver cancer arises either from hepatocytic or biliary lineage cells, giving rise to hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICCA). Combined hepatocellular- cholangiocarcinomas (cHCC-CCA) exhibit equivocal or mixed features of both, causing diagnostic uncertainty and difficulty in determining proper management. Here, we perform a comprehensive deep learning-based phenotyping of multiple cohorts of patients. We show that deep learning can reproduce the diagnosis of HCC vs. CCA with a high performance. We analyze a series of 405 cHCC-CCA patients and demonstrate that the model can reclassify the tumors as HCC or ICCA, and that the predictions are consistent with clinical outcomes, genetic alterations and in situ spatial gene expression profiling. This type of approach could improve treatment decisions and ultimately clinical outcome for patients with rare and biphenotypic cancers such as cHCC-CCA.
Persistent Identifierhttp://hdl.handle.net/10722/346450

 

DC FieldValueLanguage
dc.contributor.authorCalderaro, Julien-
dc.contributor.authorGhaffari Laleh, Narmin-
dc.contributor.authorZeng, Qinghe-
dc.contributor.authorMaille, Pascale-
dc.contributor.authorFavre, Loetitia-
dc.contributor.authorPujals, Anaïs-
dc.contributor.authorKlein, Christophe-
dc.contributor.authorBazille, Céline-
dc.contributor.authorHeij, Lara R.-
dc.contributor.authorUguen, Arnaud-
dc.contributor.authorLuedde, Tom-
dc.contributor.authorDi Tommaso, Luca-
dc.contributor.authorBeaufrère, Aurélie-
dc.contributor.authorChatain, Augustin-
dc.contributor.authorGastineau, Delphine-
dc.contributor.authorNguyen, Cong Trung-
dc.contributor.authorNguyen-Canh, Hiep-
dc.contributor.authorThi, Khuyen Nguyen-
dc.contributor.authorGnemmi, Viviane-
dc.contributor.authorGraham, Rondell P.-
dc.contributor.authorCharlotte, Frédéric-
dc.contributor.authorWendum, Dominique-
dc.contributor.authorVij, Mukul-
dc.contributor.authorAllende, Daniela S.-
dc.contributor.authorAucejo, Federico-
dc.contributor.authorDiaz, Alba-
dc.contributor.authorRivière, Benjamin-
dc.contributor.authorHerrero, Astrid-
dc.contributor.authorEvert, Katja-
dc.contributor.authorCalvisi, Diego Francesco-
dc.contributor.authorAugustin, Jérémy-
dc.contributor.authorLeow, Wei Qiang-
dc.contributor.authorLeung, Howard Ho Wai-
dc.contributor.authorBoleslawski, Emmanuel-
dc.contributor.authorRela, Mohamed-
dc.contributor.authorFrançois, Arnaud-
dc.contributor.authorCha, Anthony Wing Hung-
dc.contributor.authorForner, Alejandro-
dc.contributor.authorReig, Maria-
dc.contributor.authorAllaire, Manon-
dc.contributor.authorScatton, Olivier-
dc.contributor.authorChatelain, Denis-
dc.contributor.authorBoulagnon-Rombi, Camille-
dc.contributor.authorSturm, Nathalie-
dc.contributor.authorMenahem, Benjamin-
dc.contributor.authorFrouin, Eric-
dc.contributor.authorTougeron, David-
dc.contributor.authorTournigand, Christophe-
dc.contributor.authorKempf, Emmanuelle-
dc.contributor.authorKim, Haeryoung-
dc.contributor.authorNingarhari, Massih-
dc.contributor.authorMichalak-Provost, Sophie-
dc.contributor.authorGopal, Purva-
dc.contributor.authorBrustia, Raffaele-
dc.contributor.authorVibert, Eric-
dc.contributor.authorSchulze, Kornelius-
dc.contributor.authorRüther, Darius F.-
dc.contributor.authorWeidemann, Sören A.-
dc.contributor.authorRhaiem, Rami-
dc.contributor.authorPawlotsky, Jean Michel-
dc.contributor.authorZhang, Xuchen-
dc.contributor.authorLuciani, Alain-
dc.contributor.authorMulé, Sébastien-
dc.contributor.authorLaurent, Alexis-
dc.contributor.authorAmaddeo, Giuliana-
dc.contributor.authorRegnault, Hélène-
dc.contributor.authorDe Martin, Eleonora-
dc.contributor.authorSempoux, Christine-
dc.contributor.authorNavale, Pooja-
dc.contributor.authorWesterhoff, Maria-
dc.contributor.authorLo, Regina Cheuk Lam-
dc.contributor.authorBednarsch, Jan-
dc.contributor.authorGouw, Annette-
dc.contributor.authorGuettier, Catherine-
dc.contributor.authorLequoy, Marie-
dc.contributor.authorHarada, Kenichi-
dc.contributor.authorSripongpun, Pimsiri-
dc.contributor.authorWetwittayaklang, Poowadon-
dc.contributor.authorLoménie, Nicolas-
dc.contributor.authorTantipisit, Jarukit-
dc.contributor.authorKaewdech, Apichat-
dc.contributor.authorShen, Jeanne-
dc.contributor.authorParadis, Valérie-
dc.contributor.authorCaruso, Stefano-
dc.contributor.authorKather, Jakob Nikolas-
dc.date.accessioned2024-09-17T00:30:40Z-
dc.date.available2024-09-17T00:30:40Z-
dc.date.issued2023-12-14-
dc.identifier.citationNature Communications, 2023, v. 14, n. 1-
dc.identifier.urihttp://hdl.handle.net/10722/346450-
dc.description.abstractPrimary liver cancer arises either from hepatocytic or biliary lineage cells, giving rise to hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICCA). Combined hepatocellular- cholangiocarcinomas (cHCC-CCA) exhibit equivocal or mixed features of both, causing diagnostic uncertainty and difficulty in determining proper management. Here, we perform a comprehensive deep learning-based phenotyping of multiple cohorts of patients. We show that deep learning can reproduce the diagnosis of HCC vs. CCA with a high performance. We analyze a series of 405 cHCC-CCA patients and demonstrate that the model can reclassify the tumors as HCC or ICCA, and that the predictions are consistent with clinical outcomes, genetic alterations and in situ spatial gene expression profiling. This type of approach could improve treatment decisions and ultimately clinical outcome for patients with rare and biphenotypic cancers such as cHCC-CCA.-
dc.languageeng-
dc.publisherNature Portfolio-
dc.relation.ispartofNature Communications-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleDeep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-023-43749-3-
dc.identifier.pmid38092727-
dc.identifier.scopuseid_2-s2.0-85179647318-
dc.identifier.volume14-
dc.identifier.issue1-
dc.identifier.eissn2041-1723-
dc.identifier.issnl2041-1723-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats