File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Maximizing the collective learning effects in regional economic development

TitleMaximizing the collective learning effects in regional economic development
Authors
KeywordsCollective learning
Core-periphery structure
Economic development
Percolation
Spatial networks
Issue Date2017
Citation
2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2017, 2017, v. 2018-February, p. 337-341 How to Cite?
AbstractCollective learning in economic development has been revealed by recent empirical studies, however, investigations on how to benefit most from its effects remain still lacking. In this paper, we explore the maximization of the collective learning effects using a simple propagation model to study the diversification of industries on real networks built on Brazilian labor data. For the inter-regional learning, we find an optimal strategy that makes a balance between core and periphery industries in the initial activation, considering the core-periphery structure of the industry space - a network representation of the relatedness between industries. For the inter-regional learning, we find an optimal strategy that makes a balance between nearby and distant regions in establishing new spatial connections, considering the spatial structure of the integrated adjacent network that connects all regions. Our findings suggest that the near to by random strategies are likely to make the best use of the collective learning effects in advancing regional economic development practices.
Persistent Identifierhttp://hdl.handle.net/10722/346659

 

DC FieldValueLanguage
dc.contributor.authorGao, Jian-
dc.date.accessioned2024-09-17T04:12:23Z-
dc.date.available2024-09-17T04:12:23Z-
dc.date.issued2017-
dc.identifier.citation2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2017, 2017, v. 2018-February, p. 337-341-
dc.identifier.urihttp://hdl.handle.net/10722/346659-
dc.description.abstractCollective learning in economic development has been revealed by recent empirical studies, however, investigations on how to benefit most from its effects remain still lacking. In this paper, we explore the maximization of the collective learning effects using a simple propagation model to study the diversification of industries on real networks built on Brazilian labor data. For the inter-regional learning, we find an optimal strategy that makes a balance between core and periphery industries in the initial activation, considering the core-periphery structure of the industry space - a network representation of the relatedness between industries. For the inter-regional learning, we find an optimal strategy that makes a balance between nearby and distant regions in establishing new spatial connections, considering the spatial structure of the integrated adjacent network that connects all regions. Our findings suggest that the near to by random strategies are likely to make the best use of the collective learning effects in advancing regional economic development practices.-
dc.languageeng-
dc.relation.ispartof2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2017-
dc.subjectCollective learning-
dc.subjectCore-periphery structure-
dc.subjectEconomic development-
dc.subjectPercolation-
dc.subjectSpatial networks-
dc.titleMaximizing the collective learning effects in regional economic development-
dc.typeConference_Paper-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/ICCWAMTIP.2017.8301509-
dc.identifier.scopuseid_2-s2.0-85042725918-
dc.identifier.volume2018-February-
dc.identifier.spage337-
dc.identifier.epage341-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats