File Download
There are no files associated with this item.
Supplementary
-
Citations:
- Appears in Collections:
Article: On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization
Title | On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization |
---|---|
Authors | |
Issue Date | 16-Mar-2024 |
Publisher | OpenReview.net |
Citation | Transactions on Machine Learning Research, 2024 How to Cite? |
Abstract | Adaptive gradient methods are workhorses in deep learning. However, the convergence guarantees of adaptive gradient methods for nonconvex optimization have not been thoroughly studied. In this paper, we provide a fine-grained convergence analysis for a general class of adaptive gradient methods including AMSGrad, RMSProp and AdaGrad. For smooth nonconvex functions, we prove that adaptive gradient methods in expectation converge to a first-order stationary point. Our convergence rate is better than existing results for adaptive gradient methods in terms of dimension. In addition, we also prove high probability bounds on the convergence rates of AMSGrad, RMSProp as well as AdaGrad, which have not been established before. Our analyses shed light on better understanding the mechanism behind adaptive gradient methods in optimizing nonconvex objectives. |
Persistent Identifier | http://hdl.handle.net/10722/347192 |
ISSN |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhou, Dongruo | - |
dc.contributor.author | Chen, Jinghui | - |
dc.contributor.author | Cao, Yuan | - |
dc.contributor.author | Yang, Ziyan | - |
dc.contributor.author | Gu, Quanquan | - |
dc.date.accessioned | 2024-09-18T00:31:01Z | - |
dc.date.available | 2024-09-18T00:31:01Z | - |
dc.date.issued | 2024-03-16 | - |
dc.identifier.citation | Transactions on Machine Learning Research, 2024 | - |
dc.identifier.issn | 2835-8856 | - |
dc.identifier.uri | http://hdl.handle.net/10722/347192 | - |
dc.description.abstract | <p>Adaptive gradient methods are workhorses in deep learning. However, the convergence guarantees of adaptive gradient methods for nonconvex optimization have not been thoroughly studied. In this paper, we provide a fine-grained convergence analysis for a general class of adaptive gradient methods including AMSGrad, RMSProp and AdaGrad. For smooth nonconvex functions, we prove that adaptive gradient methods in expectation converge to a first-order stationary point. Our convergence rate is better than existing results for adaptive gradient methods in terms of dimension. In addition, we also prove high probability bounds on the convergence rates of AMSGrad, RMSProp as well as AdaGrad, which have not been established before. Our analyses shed light on better understanding the mechanism behind adaptive gradient methods in optimizing nonconvex objectives.<br></p> | - |
dc.language | eng | - |
dc.publisher | OpenReview.net | - |
dc.relation.ispartof | Transactions on Machine Learning Research | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.title | On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization | - |
dc.type | Article | - |
dc.identifier.eissn | 2835-8856 | - |