File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Improved assembly of the Pungitius pungitius reference genome

TitleImproved assembly of the Pungitius pungitius reference genome
Authors
Issue Date11-Jun-2024
PublisherGenetics Society of America
Citation
G3: Genes, Genomes, Genetics, 2024, v. 14, n. 8 How to Cite?
Abstract

The nine-spined stickleback (Pungitius pungitius) has been increasingly used as a model system in studies of local adaptation and sex chromosome evolution but its current reference genome assembly is far from perfect, lacking distinct sex chromosomes. We generated an improved assembly of the nine-spined stickleback reference genome (98.3% BUSCO completeness) with the aid of linked-read mapping. While the new assembly (v8) was of similar size as the earlier version (v7), we were able to assign 4.4 times more contigs to the linkage groups and improve the contiguity of the genome. Moreover, the new assembly contains a ∼22.8 Mb Y-linked scaffold (LG22) consisting mainly of previously assigned X-contigs, putative Y-contigs, putative centromere contigs, and highly repetitive elements. The male individual showed an even mapping depth on LG12 (pseudo X chromosome) and LG22 (Y-linked scaffold) in the segregating sites, suggesting near-pure X and Y representation in the v8 assembly. A total of 26,803 genes were annotated, and about 33% of the assembly was found to consist of repetitive elements. The high proportion of repetitive elements in LG22 (53.10%) suggests it can be difficult to assemble the complete sequence of the species’ Y chromosome. Nevertheless, the new assembly is a significant improvement over the previous version and should provide a valuable resource for genomic studies of stickleback fishes. 


Persistent Identifierhttp://hdl.handle.net/10722/347802
ISSN
2023 Impact Factor: 2.1
2023 SCImago Journal Rankings: 0.936

 

DC FieldValueLanguage
dc.contributor.authorWang, Dandan-
dc.contributor.authorRastas, Pasi-
dc.contributor.authorYi, Xueling-
dc.contributor.authorLöytynoja, Ari-
dc.contributor.authorKivikoski, Mikko-
dc.contributor.authorFeng, Xueyun-
dc.contributor.authorReid, Kerry-
dc.contributor.authorMerilä, Juha-
dc.date.accessioned2024-09-29T00:30:26Z-
dc.date.available2024-09-29T00:30:26Z-
dc.date.issued2024-06-11-
dc.identifier.citationG3: Genes, Genomes, Genetics, 2024, v. 14, n. 8-
dc.identifier.issn2160-1836-
dc.identifier.urihttp://hdl.handle.net/10722/347802-
dc.description.abstract<p>The nine-spined stickleback (Pungitius pungitius) has been increasingly used as a model system in studies of local adaptation and sex chromosome evolution but its current reference genome assembly is far from perfect, lacking distinct sex chromosomes. We generated an improved assembly of the nine-spined stickleback reference genome (98.3% BUSCO completeness) with the aid of linked-read mapping. While the new assembly (v8) was of similar size as the earlier version (v7), we were able to assign 4.4 times more contigs to the linkage groups and improve the contiguity of the genome. Moreover, the new assembly contains a ∼22.8 Mb Y-linked scaffold (LG22) consisting mainly of previously assigned X-contigs, putative Y-contigs, putative centromere contigs, and highly repetitive elements. The male individual showed an even mapping depth on LG12 (pseudo X chromosome) and LG22 (Y-linked scaffold) in the segregating sites, suggesting near-pure X and Y representation in the v8 assembly. A total of 26,803 genes were annotated, and about 33% of the assembly was found to consist of repetitive elements. The high proportion of repetitive elements in LG22 (53.10%) suggests it can be difficult to assemble the complete sequence of the species’ Y chromosome. Nevertheless, the new assembly is a significant improvement over the previous version and should provide a valuable resource for genomic studies of stickleback fishes. <br></p>-
dc.languageeng-
dc.publisherGenetics Society of America-
dc.relation.ispartofG3: Genes, Genomes, Genetics-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleImproved assembly of the Pungitius pungitius reference genome-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1093/g3journal/jkae126-
dc.identifier.volume14-
dc.identifier.issue8-
dc.identifier.issnl2160-1836-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats