File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Tracy-Widom law for the extreme eigenvalues of sample correlation matrices

TitleTracy-Widom law for the extreme eigenvalues of sample correlation matrices
Authors
KeywordsExtreme eigenvalues
Sample correlation matrices
Sample covariance matrices
Stieltjes transform
Tracy-Widom law
Issue Date2012
Citation
Electronic Journal of Probability, 2012, v. 17 How to Cite?
AbstractLet the sample correlation matrix be W = YY Twhere Y = (y ij) p;n with y ij. We assume to be a collection of independent symmetrically distributed random variables with sub-exponential tails. Moreover, for any i, we assume x ij, 1 ≤ j ≤ n to be identically distributed. We assume 0 < p < n and p=n → y with some y ε (0; 1) as p; n → ∞. In this paper, we provide the Tracy-Widom law (TW1) for both the largest and smallest eigenvalues of W. If x ij are i.i.d. standard normal, we can derive the TW 1 for both the largest and smallest eigenvalues of the matrix R = RR T, where R = (r ij) p;n with r ij.
Persistent Identifierhttp://hdl.handle.net/10722/348977

 

DC FieldValueLanguage
dc.contributor.authorBao, Zhigang-
dc.contributor.authorPan, Guangming-
dc.contributor.authorZhou, Wang-
dc.date.accessioned2024-10-17T06:55:22Z-
dc.date.available2024-10-17T06:55:22Z-
dc.date.issued2012-
dc.identifier.citationElectronic Journal of Probability, 2012, v. 17-
dc.identifier.urihttp://hdl.handle.net/10722/348977-
dc.description.abstractLet the sample correlation matrix be W = YY Twhere Y = (y ij) p;n with y ij. We assume to be a collection of independent symmetrically distributed random variables with sub-exponential tails. Moreover, for any i, we assume x ij, 1 ≤ j ≤ n to be identically distributed. We assume 0 < p < n and p=n → y with some y ε (0; 1) as p; n → ∞. In this paper, we provide the Tracy-Widom law (TW1) for both the largest and smallest eigenvalues of W. If x ij are i.i.d. standard normal, we can derive the TW 1 for both the largest and smallest eigenvalues of the matrix R = RR T, where R = (r ij) p;n with r ij.-
dc.languageeng-
dc.relation.ispartofElectronic Journal of Probability-
dc.subjectExtreme eigenvalues-
dc.subjectSample correlation matrices-
dc.subjectSample covariance matrices-
dc.subjectStieltjes transform-
dc.subjectTracy-Widom law-
dc.titleTracy-Widom law for the extreme eigenvalues of sample correlation matrices-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1214/EJP.v17-1962-
dc.identifier.scopuseid_2-s2.0-84867537555-
dc.identifier.volume17-
dc.identifier.eissn1083-6489-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats