File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: The logarithmic law of random determinant

TitleThe logarithmic law of random determinant
Authors
KeywordsCLT for martingale
Logarithmic law
Random determinant
Issue Date2015
Citation
Bernoulli, 2015, v. 21, n. 3, p. 1600-1628 How to Cite?
AbstractConsider the square random matrix An = (aij)n,n, where {aij:= a(n)ij , i, j = 1, . . . , n} is a collection of independent real random variables with means zero and variances one. Under the additional moment condition supn max1≤i,j ≤n Ea4ij <∞, we prove Girko's logarithmic law of det An in the sense that as n→∞ log | detAn| ? (1/2) log(n-1)! d/→√(1/2) log n N(0, 1).
Persistent Identifierhttp://hdl.handle.net/10722/349080
ISSN
2023 Impact Factor: 1.5
2023 SCImago Journal Rankings: 1.522

 

DC FieldValueLanguage
dc.contributor.authorBao, Zhigang-
dc.contributor.authorPan, Guangming-
dc.contributor.authorZhou, Wang-
dc.date.accessioned2024-10-17T06:56:08Z-
dc.date.available2024-10-17T06:56:08Z-
dc.date.issued2015-
dc.identifier.citationBernoulli, 2015, v. 21, n. 3, p. 1600-1628-
dc.identifier.issn1350-7265-
dc.identifier.urihttp://hdl.handle.net/10722/349080-
dc.description.abstractConsider the square random matrix An = (aij)n,n, where {aij:= a(n)ij , i, j = 1, . . . , n} is a collection of independent real random variables with means zero and variances one. Under the additional moment condition supn max1≤i,j ≤n Ea4ij <∞, we prove Girko's logarithmic law of det An in the sense that as n→∞ log | detAn| ? (1/2) log(n-1)! d/→√(1/2) log n N(0, 1).-
dc.languageeng-
dc.relation.ispartofBernoulli-
dc.subjectCLT for martingale-
dc.subjectLogarithmic law-
dc.subjectRandom determinant-
dc.titleThe logarithmic law of random determinant-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.3150/14-BEJ615-
dc.identifier.scopuseid_2-s2.0-84938561206-
dc.identifier.volume21-
dc.identifier.issue3-
dc.identifier.spage1600-
dc.identifier.epage1628-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats