File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Delocalization for a class of random block band matrices

TitleDelocalization for a class of random block band matrices
Authors
KeywordsDelocalization
Green’s function comparison
Local semicircle law
Random band matrix
Supersymmetry
Issue Date2017
Citation
Probability Theory and Related Fields, 2017, v. 167, n. 3-4, p. 673-776 How to Cite?
AbstractWe consider N× N Hermitian random matrices H consisting of blocks of size M≥ N6 / 7. The matrix elements are i.i.d. within the blocks, close to a Gaussian in the four moment matching sense, but their distribution varies from block to block to form a block-band structure, with an essential band width M. We show that the entries of the Green’s function G(z) = (H- z) - 1 satisfy the local semicircle law with spectral parameter z= E+ iη down to the real axis for any η≫ N- 1, using a combination of the supersymmetry method inspired by Shcherbina (J Stat Phys 155(3): 466–499, 2014) and the Green’s function comparison strategy. Previous estimates were valid only for η≫ M- 1. The new estimate also implies that the eigenvectors in the middle of the spectrum are fully delocalized.
Persistent Identifierhttp://hdl.handle.net/10722/349106
ISSN
2023 Impact Factor: 1.5
2023 SCImago Journal Rankings: 2.326

 

DC FieldValueLanguage
dc.contributor.authorBao, Zhigang-
dc.contributor.authorErdős, László-
dc.date.accessioned2024-10-17T06:56:18Z-
dc.date.available2024-10-17T06:56:18Z-
dc.date.issued2017-
dc.identifier.citationProbability Theory and Related Fields, 2017, v. 167, n. 3-4, p. 673-776-
dc.identifier.issn0178-8051-
dc.identifier.urihttp://hdl.handle.net/10722/349106-
dc.description.abstractWe consider N× N Hermitian random matrices H consisting of blocks of size M≥ N6 / 7. The matrix elements are i.i.d. within the blocks, close to a Gaussian in the four moment matching sense, but their distribution varies from block to block to form a block-band structure, with an essential band width M. We show that the entries of the Green’s function G(z) = (H- z) - 1 satisfy the local semicircle law with spectral parameter z= E+ iη down to the real axis for any η≫ N- 1, using a combination of the supersymmetry method inspired by Shcherbina (J Stat Phys 155(3): 466–499, 2014) and the Green’s function comparison strategy. Previous estimates were valid only for η≫ M- 1. The new estimate also implies that the eigenvectors in the middle of the spectrum are fully delocalized.-
dc.languageeng-
dc.relation.ispartofProbability Theory and Related Fields-
dc.subjectDelocalization-
dc.subjectGreen’s function comparison-
dc.subjectLocal semicircle law-
dc.subjectRandom band matrix-
dc.subjectSupersymmetry-
dc.titleDelocalization for a class of random block band matrices-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1007/s00440-015-0692-y-
dc.identifier.scopuseid_2-s2.0-84955242952-
dc.identifier.volume167-
dc.identifier.issue3-4-
dc.identifier.spage673-
dc.identifier.epage776-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats