File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: CLT for linear spectral statistics of hermitian wigner matrices with general moment conditions

TitleCLT for linear spectral statistics of hermitian wigner matrices with general moment conditions
Authors
KeywordsCentral limit theorem
Hermitian Wigner matrices
Linear spectral statistics
Issue Date2016
Citation
Theory of Probability and its Applications, 2016, v. 60, n. 2, p. 187-206 How to Cite?
AbstractIn this paper, we study the Hermitian Wigner matrix Wn = (xij)1≦i,j≦n with independent (up to symmetry) mean zero variance one entries. Under some Lindeberg type condition on the fourth moments of the entries, we establish a central limit theorem for the linear eigenvalue statistics of Wn. Our result extends the previous results on this topic to a more general case without the assumption Ex2ij = 0 for 1 ≦ i < j ≦ n. Instead, we only assume that the real part and imaginary part of the upper-diagonal entry are uncorrelated. More precisely, we require Ex2ij to be real and homogeneous for all 1 ≦ i ≦ j ≦ n. The limiting normal distribution of the central limit theorem is shown to depend on the parameter Ex2ij ∈ [−1, 1].
Persistent Identifierhttp://hdl.handle.net/10722/349124
ISSN
2023 Impact Factor: 0.5
2023 SCImago Journal Rankings: 0.315

 

DC FieldValueLanguage
dc.contributor.authorBao, Z.-
dc.contributor.authorXie, J.-
dc.date.accessioned2024-10-17T06:56:25Z-
dc.date.available2024-10-17T06:56:25Z-
dc.date.issued2016-
dc.identifier.citationTheory of Probability and its Applications, 2016, v. 60, n. 2, p. 187-206-
dc.identifier.issn0040-585X-
dc.identifier.urihttp://hdl.handle.net/10722/349124-
dc.description.abstractIn this paper, we study the Hermitian Wigner matrix Wn = (xij)1≦i,j≦n with independent (up to symmetry) mean zero variance one entries. Under some Lindeberg type condition on the fourth moments of the entries, we establish a central limit theorem for the linear eigenvalue statistics of Wn. Our result extends the previous results on this topic to a more general case without the assumption Ex2ij = 0 for 1 ≦ i < j ≦ n. Instead, we only assume that the real part and imaginary part of the upper-diagonal entry are uncorrelated. More precisely, we require Ex2ij to be real and homogeneous for all 1 ≦ i ≦ j ≦ n. The limiting normal distribution of the central limit theorem is shown to depend on the parameter Ex2ij ∈ [−1, 1].-
dc.languageeng-
dc.relation.ispartofTheory of Probability and its Applications-
dc.subjectCentral limit theorem-
dc.subjectHermitian Wigner matrices-
dc.subjectLinear spectral statistics-
dc.titleCLT for linear spectral statistics of hermitian wigner matrices with general moment conditions-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1137/S0040585X97T987624-
dc.identifier.scopuseid_2-s2.0-84973484126-
dc.identifier.volume60-
dc.identifier.issue2-
dc.identifier.spage187-
dc.identifier.epage206-
dc.identifier.eissn1095-7219-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats