File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1002/advs.202407017
- Scopus: eid_2-s2.0-85203667993
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Fracture Behavior of a 2D Imine-Based Polymer
Title | Fracture Behavior of a 2D Imine-Based Polymer |
---|---|
Authors | |
Keywords | 2D polymer fracture mechanisms in situ test transmission electron microscope (TEM) |
Issue Date | 2024 |
Citation | Advanced Science, 2024 How to Cite? |
Abstract | 2D polymers have emerged as a highly promising category of nanomaterials, owing to their exceptional properties. However, the understanding of their fracture behavior and failure mechanisms remains still limited, posing challenges to their durability in practical applications. This work presents an in-depth study of the fracture kinetics of a 2D polyimine film, utilizing in situ tensile testing within a transmission electron microscope (TEM). Employing meticulously optimized transferring and patterning techniques, an elastic strain of ≈6.5% is achieved, corresponding to an elastic modulus of (8.6 ± 2.5) GPa of polycrystalline 2D polyimine thin films. In step-by-step fractures, multiple cracking events uncover the initiation and development of side crack near the main crack tip which toughens the 2D film. Simultaneously captured strain evolution through digital image correlation (DIC) analysis and observation on the crack edge confirm the occurrence of transgranular fracture patterns apart from intergranular fracture. A preferred cleavage orientation in transgranular fracture is attributed to the difference in directional flexibility along distinct orientations, which is substantiated by density functional-based tight binding (DFTB) calculations. These findings construct a comprehensive understanding of intrinsic mechanical properties and fracture behavior of an imine-linked polymer and provide insights and implications for the rational design of 2D polymers. |
Persistent Identifier | http://hdl.handle.net/10722/349224 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Bowen | - |
dc.contributor.author | Liu, Xiaohui | - |
dc.contributor.author | Bodesheim, David | - |
dc.contributor.author | Li, Wei | - |
dc.contributor.author | Clausner, André | - |
dc.contributor.author | Liu, Jinxin | - |
dc.contributor.author | Jost, Birgit | - |
dc.contributor.author | Dianat, Arezoo | - |
dc.contributor.author | Dong, Renhao | - |
dc.contributor.author | Feng, Xinliang | - |
dc.contributor.author | Cuniberti, Gianaurelio | - |
dc.contributor.author | Liao, Zhongquan | - |
dc.contributor.author | Zschech, Ehrenfried | - |
dc.date.accessioned | 2024-10-17T06:57:06Z | - |
dc.date.available | 2024-10-17T06:57:06Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Advanced Science, 2024 | - |
dc.identifier.uri | http://hdl.handle.net/10722/349224 | - |
dc.description.abstract | 2D polymers have emerged as a highly promising category of nanomaterials, owing to their exceptional properties. However, the understanding of their fracture behavior and failure mechanisms remains still limited, posing challenges to their durability in practical applications. This work presents an in-depth study of the fracture kinetics of a 2D polyimine film, utilizing in situ tensile testing within a transmission electron microscope (TEM). Employing meticulously optimized transferring and patterning techniques, an elastic strain of ≈6.5% is achieved, corresponding to an elastic modulus of (8.6 ± 2.5) GPa of polycrystalline 2D polyimine thin films. In step-by-step fractures, multiple cracking events uncover the initiation and development of side crack near the main crack tip which toughens the 2D film. Simultaneously captured strain evolution through digital image correlation (DIC) analysis and observation on the crack edge confirm the occurrence of transgranular fracture patterns apart from intergranular fracture. A preferred cleavage orientation in transgranular fracture is attributed to the difference in directional flexibility along distinct orientations, which is substantiated by density functional-based tight binding (DFTB) calculations. These findings construct a comprehensive understanding of intrinsic mechanical properties and fracture behavior of an imine-linked polymer and provide insights and implications for the rational design of 2D polymers. | - |
dc.language | eng | - |
dc.relation.ispartof | Advanced Science | - |
dc.subject | 2D polymer | - |
dc.subject | fracture mechanisms | - |
dc.subject | in situ test | - |
dc.subject | transmission electron microscope (TEM) | - |
dc.title | Fracture Behavior of a 2D Imine-Based Polymer | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1002/advs.202407017 | - |
dc.identifier.scopus | eid_2-s2.0-85203667993 | - |
dc.identifier.eissn | 2198-3844 | - |