File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: QUANTITATIVE CLT FOR LINEAR EIGENVALUE STATISTICS OF WIGNER MATRICES

TitleQUANTITATIVE CLT FOR LINEAR EIGENVALUE STATISTICS OF WIGNER MATRICES
Authors
KeywordsCLT
convergence rate
Kolmogorov–Smirnov distance
linear eigenvalue statistics
Wigner matrix
Issue Date2023
Citation
Annals of Applied Probability, 2023, v. 33, n. 6, p. 5171-5207 How to Cite?
AbstractIn this article, we establish a near-optimal convergence rate for the CLT of linear eigenvalue statistics of N × N Wigner matrices, in Kolmogorov–Smirnov distance. For all test functions f ∈ C5(R), we show that the convergence rate is either N-1/2+ε or N-1+ε, depending on the first Chebyshev coefficient of f and the third moment of the diagonal matrix entries. The condition that distinguishes these two rates is necessary and sufficient. For a general class of test functions, we further identify matching lower bounds for the convergence rates. In addition, we identify an explicit, nonuniversal contribution in the linear eigenvalue statistics, which is responsible for the slow rate N-1/2+ε for non-Gaussian ensembles. By removing this nonuniversal part, we show that the shifted linear eigenvalue statistics have the unified convergence rate N-1+ε for all test functions.
Persistent Identifierhttp://hdl.handle.net/10722/350011
ISSN
2023 Impact Factor: 1.4
2023 SCImago Journal Rankings: 1.620

 

DC FieldValueLanguage
dc.contributor.authorBao, Zhigang-
dc.contributor.authorHe, Yukun-
dc.date.accessioned2024-10-17T07:02:28Z-
dc.date.available2024-10-17T07:02:28Z-
dc.date.issued2023-
dc.identifier.citationAnnals of Applied Probability, 2023, v. 33, n. 6, p. 5171-5207-
dc.identifier.issn1050-5164-
dc.identifier.urihttp://hdl.handle.net/10722/350011-
dc.description.abstractIn this article, we establish a near-optimal convergence rate for the CLT of linear eigenvalue statistics of N × N Wigner matrices, in Kolmogorov–Smirnov distance. For all test functions f ∈ C5(R), we show that the convergence rate is either N-1/2+ε or N-1+ε, depending on the first Chebyshev coefficient of f and the third moment of the diagonal matrix entries. The condition that distinguishes these two rates is necessary and sufficient. For a general class of test functions, we further identify matching lower bounds for the convergence rates. In addition, we identify an explicit, nonuniversal contribution in the linear eigenvalue statistics, which is responsible for the slow rate N-1/2+ε for non-Gaussian ensembles. By removing this nonuniversal part, we show that the shifted linear eigenvalue statistics have the unified convergence rate N-1+ε for all test functions.-
dc.languageeng-
dc.relation.ispartofAnnals of Applied Probability-
dc.subjectCLT-
dc.subjectconvergence rate-
dc.subjectKolmogorov–Smirnov distance-
dc.subjectlinear eigenvalue statistics-
dc.subjectWigner matrix-
dc.titleQUANTITATIVE CLT FOR LINEAR EIGENVALUE STATISTICS OF WIGNER MATRICES-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1214/23-AAP1945-
dc.identifier.scopuseid_2-s2.0-85180115072-
dc.identifier.volume33-
dc.identifier.issue6-
dc.identifier.spage5171-
dc.identifier.epage5207-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats