File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
  • Find via Find It@HKUL
Supplementary

Article: An ℓ∞ eigenvector perturbation bound and its application to robust covariance estimation

TitleAn ℓ∞ eigenvector perturbation bound and its application to robust covariance estimation
Authors
Issue Date1-Jan-2017
PublisherJournal of Machine Learning Research
Citation
Journal of Machine Learning Research, 2017, v. 18, n. 1, p. 7608-7649 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/350946
ISSN
2023 Impact Factor: 4.3
2023 SCImago Journal Rankings: 2.796

 

DC FieldValueLanguage
dc.contributor.authorFan, Jianqing-
dc.contributor.authorWang, Weichen-
dc.contributor.authorZhong, Yiqiao-
dc.date.accessioned2024-11-07T00:30:07Z-
dc.date.available2024-11-07T00:30:07Z-
dc.date.issued2017-01-01-
dc.identifier.citationJournal of Machine Learning Research, 2017, v. 18, n. 1, p. 7608-7649-
dc.identifier.issn1532-4435-
dc.identifier.urihttp://hdl.handle.net/10722/350946-
dc.languageeng-
dc.publisherJournal of Machine Learning Research-
dc.relation.ispartofJournal of Machine Learning Research-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleAn ℓ∞ eigenvector perturbation bound and its application to robust covariance estimation-
dc.typeArticle-
dc.identifier.volume18-
dc.identifier.issue1-
dc.identifier.spage7608-
dc.identifier.epage7649-
dc.identifier.eissn1533-7928-
dc.identifier.issnl1532-4435-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats