File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Feasibility of the spatiotemporal fusion model in monitoring ebinur lake’s suspended particulate matter under the missing-data scenario

TitleFeasibility of the spatiotemporal fusion model in monitoring ebinur lake’s suspended particulate matter under the missing-data scenario
Authors
KeywordsEbinur lake
Missing-data scenario
Remote-sensing data source
Spatiotemporal fusion model
Suspended particulate matter
Water quality monitoring
Issue Date2021
Citation
Remote Sensing, 2021, v. 13, n. 19, article no. 3952 How to Cite?
AbstractHigh-frequency monitoring of suspended particulate matter (SPM) concentration can improve water resource management. Missing high-resolution satellite images could hamper remotesensing SPM monitoring. This study resolved the problem by applying spatiotemporal fusion technology to obtain high spatial resolution and dense time-series data to fill image-data gaps. Three data sources (MODIS, Landsat 8, and Sentinel 2) and two spatiotemporal fusion methods (the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) and the flexible spatiotemporal data fusion (FSDAF)) were used to reconstruct missing satellite images. We compared their fusion accuracy and verified the consistency of fusion images between data sources. For the fusion images, we used random forest (RF) and XGBoost as inversion methods and set “fusion first” and “inversion first” strategies to test the method’s feasibility in Ebinur Lake, Xinjiang, arid northwestern China. Our results showed that (1) the blue, green, red, and NIR bands of ESTARFM fusion image were better than FSDAF, with a good consistency (R2 ≥ 0.54) between the fused Landsat 8, Sentinel 2 images, and their original images; (2) the original image and fusion image offered RF inversion effect better than XGBoost. The inversion accuracy based on Landsat 8 and Sentinel 2 were R2 0.67 and 0.73, respectively. The correlation of SPM distribution maps of the two data sources attained a good consistency of R2 0.51; (3) in retrieving SPM from fused images, the “fusion first” strategy had better accuracy. The optimal combination was ESTARFM (Landsat 8)_RF and ESTARFM (Sentinel 2)_RF, consistent with original SPM maps (R2 = 0.38, 0.41, respectively). Overall, the spatiotemporal fusion model provided effective SPM monitoring under the image-absence scenario, with good consistency in the inversion of SPM. The findings provided the research basis for long-term and high-frequency remote-sensing SPM monitoring and high-precision smart water resource management.
Persistent Identifierhttp://hdl.handle.net/10722/351599
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLiu, Changjiang-
dc.contributor.authorDuan, Pan-
dc.contributor.authorZhang, Fei-
dc.contributor.authorJim, Chi Yung-
dc.contributor.authorTan, Mou Leong-
dc.contributor.authorChan, Ngai Weng-
dc.date.accessioned2024-11-21T06:37:15Z-
dc.date.available2024-11-21T06:37:15Z-
dc.date.issued2021-
dc.identifier.citationRemote Sensing, 2021, v. 13, n. 19, article no. 3952-
dc.identifier.urihttp://hdl.handle.net/10722/351599-
dc.description.abstractHigh-frequency monitoring of suspended particulate matter (SPM) concentration can improve water resource management. Missing high-resolution satellite images could hamper remotesensing SPM monitoring. This study resolved the problem by applying spatiotemporal fusion technology to obtain high spatial resolution and dense time-series data to fill image-data gaps. Three data sources (MODIS, Landsat 8, and Sentinel 2) and two spatiotemporal fusion methods (the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) and the flexible spatiotemporal data fusion (FSDAF)) were used to reconstruct missing satellite images. We compared their fusion accuracy and verified the consistency of fusion images between data sources. For the fusion images, we used random forest (RF) and XGBoost as inversion methods and set “fusion first” and “inversion first” strategies to test the method’s feasibility in Ebinur Lake, Xinjiang, arid northwestern China. Our results showed that (1) the blue, green, red, and NIR bands of ESTARFM fusion image were better than FSDAF, with a good consistency (R2 ≥ 0.54) between the fused Landsat 8, Sentinel 2 images, and their original images; (2) the original image and fusion image offered RF inversion effect better than XGBoost. The inversion accuracy based on Landsat 8 and Sentinel 2 were R2 0.67 and 0.73, respectively. The correlation of SPM distribution maps of the two data sources attained a good consistency of R2 0.51; (3) in retrieving SPM from fused images, the “fusion first” strategy had better accuracy. The optimal combination was ESTARFM (Landsat 8)_RF and ESTARFM (Sentinel 2)_RF, consistent with original SPM maps (R2 = 0.38, 0.41, respectively). Overall, the spatiotemporal fusion model provided effective SPM monitoring under the image-absence scenario, with good consistency in the inversion of SPM. The findings provided the research basis for long-term and high-frequency remote-sensing SPM monitoring and high-precision smart water resource management.-
dc.languageeng-
dc.relation.ispartofRemote Sensing-
dc.subjectEbinur lake-
dc.subjectMissing-data scenario-
dc.subjectRemote-sensing data source-
dc.subjectSpatiotemporal fusion model-
dc.subjectSuspended particulate matter-
dc.subjectWater quality monitoring-
dc.titleFeasibility of the spatiotemporal fusion model in monitoring ebinur lake’s suspended particulate matter under the missing-data scenario-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.3390/rs13193952-
dc.identifier.scopuseid_2-s2.0-85116437366-
dc.identifier.volume13-
dc.identifier.issue19-
dc.identifier.spagearticle no. 3952-
dc.identifier.epagearticle no. 3952-
dc.identifier.eissn2072-4292-
dc.identifier.isiWOS:000717259800001-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats