File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1002/adma.202403385
- Scopus: eid_2-s2.0-85194570430
- PMID: 38769003
- WOS: WOS:001234773300001
- Find via

Supplementary
- Citations:
- Appears in Collections:
Article: Achieving Exceptional Volumetric Desalination Capacity Using Compact MoS2 Nanolaminates
| Title | Achieving Exceptional Volumetric Desalination Capacity Using Compact MoS2 Nanolaminates |
|---|---|
| Authors | |
| Keywords | 2D materials capacitive deioniazation electrochemical intercalation and exfoliation exceptional volumetric capacity nanolaminate membranes |
| Issue Date | 1-Aug-2024 |
| Publisher | Wiley |
| Citation | Advanced Materials, 2024, v. 36, n. 31 How to Cite? |
| Abstract | Capacitive deionization (CDI) has emerged as a promising technology for freshwater recovery from low-salinity brackish water. It is still inapplicable in specific scenarios (e.g., households, islands, or offshore platforms) due to too low volumetric adsorption capacities. In this study, a high-density semi-metallic molybdenum disulfide (1Tʹ-MoS2) electrode with compact architecture obtained by restacking of exfoliated nanosheets, which achieve high capacitance up to ≈277.5 F cm−3 under an ultrahigh scan rate of 1000 mV s−1 with a lower charge-transfer resistance and nearly tenfold higher electrochemical active surface area than the 2H-MoS2 electrode, is reported. Furthermore, 1Tʹ-MoS2 electrode demonstrates exceptional volumetric desalination capacity of 65.1 mgNaCl cm−3 in CDI experiments. Ex situ X-ray diffraction (XRD) reveal that the cation storage mechanism with the dynamic expansion of 1Tʹ-MoS2 interlayer to accommodate cations such as Na+, K+, Ca2+, and Mg2+, which in turn enhances the capacity. Theoretical analysis unveils that 1Tʹ phase is thermodynamically preferable over 2H phase, the ion hydration and channel confinement also play critical role in enhancing ion adsorption. Overall, this work provides a new method to design compact 2D-layered nanolaminates with high-volumetric performance for CDI desalination. |
| Persistent Identifier | http://hdl.handle.net/10722/352912 |
| ISSN | 2023 Impact Factor: 27.4 2023 SCImago Journal Rankings: 9.191 |
| ISI Accession Number ID |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Ying, Ting | - |
| dc.contributor.author | Xiong, Yu | - |
| dc.contributor.author | Peng, Huarong | - |
| dc.contributor.author | Yang, Ruijie | - |
| dc.contributor.author | Mei, Liang | - |
| dc.contributor.author | Zhang, Zhen | - |
| dc.contributor.author | Zheng, Weikang | - |
| dc.contributor.author | Yan, Ruixin | - |
| dc.contributor.author | Zhang, Yue | - |
| dc.contributor.author | Hu, Honglu | - |
| dc.contributor.author | Ma, Chen | - |
| dc.contributor.author | Chen, Ye | - |
| dc.contributor.author | Xu, Xingtao | - |
| dc.contributor.author | Yang, Juan | - |
| dc.contributor.author | Voiry, Damien | - |
| dc.contributor.author | Tang, Chuyang Y. | - |
| dc.contributor.author | Fan, Jun | - |
| dc.contributor.author | Zeng, Zhiyuan | - |
| dc.date.accessioned | 2025-01-13T00:35:12Z | - |
| dc.date.available | 2025-01-13T00:35:12Z | - |
| dc.date.issued | 2024-08-01 | - |
| dc.identifier.citation | Advanced Materials, 2024, v. 36, n. 31 | - |
| dc.identifier.issn | 0935-9648 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/352912 | - |
| dc.description.abstract | Capacitive deionization (CDI) has emerged as a promising technology for freshwater recovery from low-salinity brackish water. It is still inapplicable in specific scenarios (e.g., households, islands, or offshore platforms) due to too low volumetric adsorption capacities. In this study, a high-density semi-metallic molybdenum disulfide (1Tʹ-MoS2) electrode with compact architecture obtained by restacking of exfoliated nanosheets, which achieve high capacitance up to ≈277.5 F cm−3 under an ultrahigh scan rate of 1000 mV s−1 with a lower charge-transfer resistance and nearly tenfold higher electrochemical active surface area than the 2H-MoS2 electrode, is reported. Furthermore, 1Tʹ-MoS2 electrode demonstrates exceptional volumetric desalination capacity of 65.1 mgNaCl cm−3 in CDI experiments. Ex situ X-ray diffraction (XRD) reveal that the cation storage mechanism with the dynamic expansion of 1Tʹ-MoS2 interlayer to accommodate cations such as Na+, K+, Ca2+, and Mg2+, which in turn enhances the capacity. Theoretical analysis unveils that 1Tʹ phase is thermodynamically preferable over 2H phase, the ion hydration and channel confinement also play critical role in enhancing ion adsorption. Overall, this work provides a new method to design compact 2D-layered nanolaminates with high-volumetric performance for CDI desalination. | - |
| dc.language | eng | - |
| dc.publisher | Wiley | - |
| dc.relation.ispartof | Advanced Materials | - |
| dc.subject | 2D materials | - |
| dc.subject | capacitive deioniazation | - |
| dc.subject | electrochemical intercalation and exfoliation | - |
| dc.subject | exceptional volumetric capacity | - |
| dc.subject | nanolaminate membranes | - |
| dc.title | Achieving Exceptional Volumetric Desalination Capacity Using Compact MoS2 Nanolaminates | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1002/adma.202403385 | - |
| dc.identifier.pmid | 38769003 | - |
| dc.identifier.scopus | eid_2-s2.0-85194570430 | - |
| dc.identifier.volume | 36 | - |
| dc.identifier.issue | 31 | - |
| dc.identifier.eissn | 1521-4095 | - |
| dc.identifier.isi | WOS:001234773300001 | - |
| dc.identifier.issnl | 0935-9648 | - |
