File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Improved Bounds for Randomly Colouring Simple Hypergraphs

TitleImproved Bounds for Randomly Colouring Simple Hypergraphs
Authors
KeywordsApproximate counting
Hypergraph colouring
Markov chain
Mixing time
Issue Date2022
Citation
Leibniz International Proceedings in Informatics, LIPIcs, 2022, v. 245, article no. 25 How to Cite?
AbstractWe study the problem of sampling almost uniform proper q-colourings in k-uniform simple hypergraphs with maximum degree ∆. For any δ > 0, if k ≥ 20(1+ δ)/δ and q ≥ 100∆ 2+δ/k-4/δ-4, the running time of our algorithm is Õ(poly(∆k) · n1.01), where n is the number of vertices. Our result requires fewer colours than previous results for general hypergraphs (Jain, Pham, and Vuong, 2021; He, Sun, and Wu, 2021), and does not require Ω(log n) colours unlike the work of Frieze and Anastos (2017).
Persistent Identifierhttp://hdl.handle.net/10722/354984
ISSN
2023 SCImago Journal Rankings: 0.796

 

DC FieldValueLanguage
dc.contributor.authorFeng, Weiming-
dc.contributor.authorGuo, Heng-
dc.contributor.authorWang, Jiaheng-
dc.date.accessioned2025-03-21T09:10:27Z-
dc.date.available2025-03-21T09:10:27Z-
dc.date.issued2022-
dc.identifier.citationLeibniz International Proceedings in Informatics, LIPIcs, 2022, v. 245, article no. 25-
dc.identifier.issn1868-8969-
dc.identifier.urihttp://hdl.handle.net/10722/354984-
dc.description.abstractWe study the problem of sampling almost uniform proper q-colourings in k-uniform simple hypergraphs with maximum degree ∆. For any δ > 0, if k ≥ 20(1+ δ)/δ and q ≥ 100∆ 2+δ/k-4/δ-4, the running time of our algorithm is Õ(poly(∆k) · n1.01), where n is the number of vertices. Our result requires fewer colours than previous results for general hypergraphs (Jain, Pham, and Vuong, 2021; He, Sun, and Wu, 2021), and does not require Ω(log n) colours unlike the work of Frieze and Anastos (2017).-
dc.languageeng-
dc.relation.ispartofLeibniz International Proceedings in Informatics, LIPIcs-
dc.subjectApproximate counting-
dc.subjectHypergraph colouring-
dc.subjectMarkov chain-
dc.subjectMixing time-
dc.titleImproved Bounds for Randomly Colouring Simple Hypergraphs-
dc.typeConference_Paper-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.4230/LIPIcs.APPROX/RANDOM.2022.25-
dc.identifier.scopuseid_2-s2.0-85139106764-
dc.identifier.volume245-
dc.identifier.spagearticle no. 25-
dc.identifier.epagearticle no. 25-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats