File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TPWRS.2024.3469168
- Scopus: eid_2-s2.0-105003820290
- WOS: WOS:001473119200006
- Find via

Supplementary
- Citations:
- Appears in Collections:
Article: Hazard Resistance-Based Spatiotemporal Risk Analysis for Distribution Network Outages During Hurricanes
| Title | Hazard Resistance-Based Spatiotemporal Risk Analysis for Distribution Network Outages During Hurricanes |
|---|---|
| Authors | |
| Keywords | Distribution network hazard resistance hurricane power outages Puerto Rico risk analysis spatiotemporal |
| Issue Date | 26-Sep-2024 |
| Publisher | Institute of Electrical and Electronics Engineers |
| Citation | IEEE Transactions on Power Systems, 2025, v. 40, n. 3, p. 2143-2152 How to Cite? |
| Abstract | In recent decades, blackouts have shown an increasing prevalence of power outages due to extreme weather events such as hurricanes. Precisely assessing the spatiotemporal outages in distribution networks, the most vulnerable part of power systems, is critical to enhancing power system resilience. The Sequential Monte Carlo (SMC) simulation method is widely used for spatiotemporal risk analysis of power systems during extreme weather hazards. However, it is found here that the SMC method can lead to large errors as it repeatedly samples the failure probability from the time-invariant fragility functions of system components in time-series analysis, particularly overestimating damages under evolving hazards with high-frequency sampling. To address this issue, a novel hazard resistance-based spatiotemporal risk analysis (HRSRA) method is proposed. This method converts the failure probability of a component into a hazard resistance and uses it as a time-invariant value in time-series analysis. The proposed HRSRA provides an adaptive framework for incorporating high-spatiotemporal-resolution meteorology models into power outage simulations. By leveraging the geographic information system data of the power system and a physics-based hurricane wind field model, the superiority of the proposed method is validated using real-world time-series power outage data from Puerto Rico, including data collected during Hurricane Fiona in 2022. |
| Persistent Identifier | http://hdl.handle.net/10722/356005 |
| ISSN | 2023 Impact Factor: 6.5 2023 SCImago Journal Rankings: 3.827 |
| ISI Accession Number ID |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Xu, Luo | - |
| dc.contributor.author | Lin, Ning | - |
| dc.contributor.author | Xi, Dazhi | - |
| dc.contributor.author | Feng, Kairui | - |
| dc.contributor.author | Poor, H. Vincent | - |
| dc.date.accessioned | 2025-05-21T00:35:13Z | - |
| dc.date.available | 2025-05-21T00:35:13Z | - |
| dc.date.issued | 2024-09-26 | - |
| dc.identifier.citation | IEEE Transactions on Power Systems, 2025, v. 40, n. 3, p. 2143-2152 | - |
| dc.identifier.issn | 0885-8950 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/356005 | - |
| dc.description.abstract | In recent decades, blackouts have shown an increasing prevalence of power outages due to extreme weather events such as hurricanes. Precisely assessing the spatiotemporal outages in distribution networks, the most vulnerable part of power systems, is critical to enhancing power system resilience. The Sequential Monte Carlo (SMC) simulation method is widely used for spatiotemporal risk analysis of power systems during extreme weather hazards. However, it is found here that the SMC method can lead to large errors as it repeatedly samples the failure probability from the time-invariant fragility functions of system components in time-series analysis, particularly overestimating damages under evolving hazards with high-frequency sampling. To address this issue, a novel hazard resistance-based spatiotemporal risk analysis (HRSRA) method is proposed. This method converts the failure probability of a component into a hazard resistance and uses it as a time-invariant value in time-series analysis. The proposed HRSRA provides an adaptive framework for incorporating high-spatiotemporal-resolution meteorology models into power outage simulations. By leveraging the geographic information system data of the power system and a physics-based hurricane wind field model, the superiority of the proposed method is validated using real-world time-series power outage data from Puerto Rico, including data collected during Hurricane Fiona in 2022. | - |
| dc.language | eng | - |
| dc.publisher | Institute of Electrical and Electronics Engineers | - |
| dc.relation.ispartof | IEEE Transactions on Power Systems | - |
| dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
| dc.subject | Distribution network | - |
| dc.subject | hazard resistance | - |
| dc.subject | hurricane | - |
| dc.subject | power outages | - |
| dc.subject | Puerto Rico | - |
| dc.subject | risk analysis | - |
| dc.subject | spatiotemporal | - |
| dc.title | Hazard Resistance-Based Spatiotemporal Risk Analysis for Distribution Network Outages During Hurricanes | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1109/TPWRS.2024.3469168 | - |
| dc.identifier.scopus | eid_2-s2.0-105003820290 | - |
| dc.identifier.volume | 40 | - |
| dc.identifier.issue | 3 | - |
| dc.identifier.spage | 2143 | - |
| dc.identifier.epage | 2152 | - |
| dc.identifier.eissn | 1558-0679 | - |
| dc.identifier.isi | WOS:001473119200006 | - |
| dc.identifier.issnl | 0885-8950 | - |
