File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: LocusMasterTE: integrating long-read RNA sequencing improves locus-specific quantification of transposable element expression

TitleLocusMasterTE: integrating long-read RNA sequencing improves locus-specific quantification of transposable element expression
Authors
KeywordsExpectation–maximization model
Short-read RNA-seq quantification
Transposable elements
Issue Date26-Mar-2025
PublisherBioMed Central
Citation
Genome Biology, 2025, v. 26, n. 1 How to Cite?
AbstractTransposable elements (TEs) can influence human diseases by disrupting genome integrity, yet their quantification has been challenging due to the repetitive nature of these sequences across the genome. We develop LocusMasterTE, a method that integrates long-read with short-read RNA-seq to increase the accuracy of TE expression quantification. By incorporating fractional transcript per million values from long-read sequencing data into an expectation–maximization algorithm, LocusMasterTE reassigns multi-mapped reads, enhancing accuracy in short-read-based TE quantification. We validate the method with simulated and human datasets. LocusMasterTE may give new insights into TE functions through precise quantification.
Persistent Identifierhttp://hdl.handle.net/10722/356526
ISSN
2012 Impact Factor: 10.288
2023 SCImago Journal Rankings: 7.197
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLee, Sojung-
dc.contributor.authorBarbour, Jayne A-
dc.contributor.authorTam, Yee Man-
dc.contributor.authorYang, Haocheng-
dc.contributor.authorHuang, Yuanhua-
dc.contributor.authorWong, Jason WH-
dc.date.accessioned2025-06-04T00:40:14Z-
dc.date.available2025-06-04T00:40:14Z-
dc.date.issued2025-03-26-
dc.identifier.citationGenome Biology, 2025, v. 26, n. 1-
dc.identifier.issn1474-7596-
dc.identifier.urihttp://hdl.handle.net/10722/356526-
dc.description.abstractTransposable elements (TEs) can influence human diseases by disrupting genome integrity, yet their quantification has been challenging due to the repetitive nature of these sequences across the genome. We develop LocusMasterTE, a method that integrates long-read with short-read RNA-seq to increase the accuracy of TE expression quantification. By incorporating fractional transcript per million values from long-read sequencing data into an expectation–maximization algorithm, LocusMasterTE reassigns multi-mapped reads, enhancing accuracy in short-read-based TE quantification. We validate the method with simulated and human datasets. LocusMasterTE may give new insights into TE functions through precise quantification.-
dc.languageeng-
dc.publisherBioMed Central-
dc.relation.ispartofGenome Biology-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectExpectation–maximization model-
dc.subjectShort-read RNA-seq quantification-
dc.subjectTransposable elements-
dc.titleLocusMasterTE: integrating long-read RNA sequencing improves locus-specific quantification of transposable element expression-
dc.typeArticle-
dc.identifier.doi10.1186/s13059-025-03522-9-
dc.identifier.pmid40140852-
dc.identifier.scopuseid_2-s2.0-105001414032-
dc.identifier.volume26-
dc.identifier.issue1-
dc.identifier.eissn1474-760X-
dc.identifier.isiWOS:001454432900003-
dc.identifier.issnl1474-7596-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats