File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Extreme eigenvalues of log-concave ensemble

TitleExtreme eigenvalues of log-concave ensemble
Authors
KeywordsLocal law
Log-concave distribution
Sample covariance matrix
Spectral rigidity
Spiked model
Tracy–Widom law
Issue Date1-Feb-2025
PublisherInstitute of Mathematical Statistics
Citation
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 2025, v. 61, n. 1, p. 155-184 How to Cite?
Abstract

In this paper, we consider the log-concave ensemble of random matrices, a class of covariance-type matrices XX with isotropic log-concave X-columns. A main example is the covariance estimator of the uniform measure on isotropic convex body. Non-asymptotic estimates and first order asymptotic limits for the extreme eigenvalues have been obtained in the literature. In this paper, with the recent advancements on log-concave measures (Geom. Funct. Anal. 31 (2021) 34–61; Geom. Funct. Anal. 32 (2022) 1134–1159), we take a step further to locate the eigenvalues with a nearly optimal precision, namely, the spectral rigidity of this ensemble is derived. Based on the spectral rigidity and an additional “unconditional” assumption, we further derive the Tracy–Widom law for the extreme eigenvalues of XX, and the Gaussian law for the extreme eigenvalues in case strong spikes are present.


Persistent Identifierhttp://hdl.handle.net/10722/358649
ISSN
2023 Impact Factor: 1.2
2023 SCImago Journal Rankings: 1.555

 

DC FieldValueLanguage
dc.contributor.authorBao, Zhigang-
dc.contributor.authorXu, Xiaocong-
dc.date.accessioned2025-08-13T07:47:12Z-
dc.date.available2025-08-13T07:47:12Z-
dc.date.issued2025-02-01-
dc.identifier.citationAnnales de l'Institut Henri Poincaré, Probabilités et Statistiques, 2025, v. 61, n. 1, p. 155-184-
dc.identifier.issn0246-0203-
dc.identifier.urihttp://hdl.handle.net/10722/358649-
dc.description.abstract<p>In this paper, we consider the log-concave ensemble of random matrices, a class of covariance-type matrices XX<sup>∗</sup> with isotropic log-concave X-columns. A main example is the covariance estimator of the uniform measure on isotropic convex body. Non-asymptotic estimates and first order asymptotic limits for the extreme eigenvalues have been obtained in the literature. In this paper, with the recent advancements on log-concave measures (Geom. Funct. Anal. 31 (2021) 34–61; Geom. Funct. Anal. 32 (2022) 1134–1159), we take a step further to locate the eigenvalues with a nearly optimal precision, namely, the spectral rigidity of this ensemble is derived. Based on the spectral rigidity and an additional “unconditional” assumption, we further derive the Tracy–Widom law for the extreme eigenvalues of XX<sup>∗</sup>, and the Gaussian law for the extreme eigenvalues in case strong spikes are present.</p>-
dc.languageeng-
dc.publisherInstitute of Mathematical Statistics-
dc.relation.ispartofAnnales de l'Institut Henri Poincaré, Probabilités et Statistiques-
dc.subjectLocal law-
dc.subjectLog-concave distribution-
dc.subjectSample covariance matrix-
dc.subjectSpectral rigidity-
dc.subjectSpiked model-
dc.subjectTracy–Widom law-
dc.titleExtreme eigenvalues of log-concave ensemble -
dc.typeArticle-
dc.identifier.doi10.1214/23-AIHP1439-
dc.identifier.scopuseid_2-s2.0-85218963130-
dc.identifier.volume61-
dc.identifier.issue1-
dc.identifier.spage155-
dc.identifier.epage184-
dc.identifier.issnl0246-0203-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats