File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Equidistribution of Kloosterman Sums Over Function Fields

TitleEquidistribution of Kloosterman Sums Over Function Fields
Authors
Issue Date30-Jul-2025
PublisherOxford University Press
Citation
International Mathematics Research Notices, 2025, v. 2025, n. 15 How to Cite?
Abstract

We prove the Sato–Tate distribution of Kloosterman sums over function fields with explicit error terms, when the places vary in arithmetic progressions or short intervals. A joint Sato–Tate distribution of finitely many Kloosterman sums is also proved. The arguments in this paper also apply to local systems with SL(2) monodromy and suitable ramification restrictions.


Persistent Identifierhttp://hdl.handle.net/10722/358764
ISSN
2023 Impact Factor: 0.9
2023 SCImago Journal Rankings: 1.337

 

DC FieldValueLanguage
dc.contributor.authorFu, Lei-
dc.contributor.authorLau, Yuk-Kam-
dc.contributor.authorLi, Winnie Wen-Ching-
dc.contributor.authorXi, Ping-
dc.date.accessioned2025-08-13T07:47:53Z-
dc.date.available2025-08-13T07:47:53Z-
dc.date.issued2025-07-30-
dc.identifier.citationInternational Mathematics Research Notices, 2025, v. 2025, n. 15-
dc.identifier.issn1073-7928-
dc.identifier.urihttp://hdl.handle.net/10722/358764-
dc.description.abstract<p>We prove the Sato–Tate distribution of Kloosterman sums over function fields with explicit error terms, when the places vary in arithmetic progressions or short intervals. A joint Sato–Tate distribution of finitely many Kloosterman sums is also proved. The arguments in this paper also apply to local systems with SL(2) monodromy and suitable ramification restrictions.<br></p>-
dc.languageeng-
dc.publisherOxford University Press-
dc.relation.ispartofInternational Mathematics Research Notices-
dc.titleEquidistribution of Kloosterman Sums Over Function Fields-
dc.typeArticle-
dc.identifier.doi10.1093/imrn/rnaf229-
dc.identifier.scopuseid_2-s2.0-105011968705-
dc.identifier.volume2025-
dc.identifier.issue15-
dc.identifier.eissn1687-0247-
dc.identifier.issnl1073-7928-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats