File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: On the Local–Global Conjecture for Combinatorial Period Lengths of Closed Billiards on the Regular Pentagon

TitleOn the Local–Global Conjecture for Combinatorial Period Lengths of Closed Billiards on the Regular Pentagon
Authors
Issue Date1-Aug-2025
PublisherOxford University Press
Citation
International Mathematics Research Notices, 2025, v. 2025, n. 15 How to Cite?
Abstract

We study the set of combinatorial lengths of asymmetric periodic trajectories on the regular pentagon, proving a density-one version of a conjecture of Davis–Lelièvre. 


Persistent Identifierhttp://hdl.handle.net/10722/358768
ISSN
2023 Impact Factor: 0.9
2023 SCImago Journal Rankings: 1.337

 

DC FieldValueLanguage
dc.contributor.authorKontorovich, Alex-
dc.contributor.authorZhang, Xin-
dc.date.accessioned2025-08-13T07:47:54Z-
dc.date.available2025-08-13T07:47:54Z-
dc.date.issued2025-08-01-
dc.identifier.citationInternational Mathematics Research Notices, 2025, v. 2025, n. 15-
dc.identifier.issn1073-7928-
dc.identifier.urihttp://hdl.handle.net/10722/358768-
dc.description.abstract<p>We study the set of combinatorial lengths of asymmetric periodic trajectories on the regular pentagon, proving a density-one version of a conjecture of Davis–Lelièvre. <br></p>-
dc.languageeng-
dc.publisherOxford University Press-
dc.relation.ispartofInternational Mathematics Research Notices-
dc.titleOn the Local–Global Conjecture for Combinatorial Period Lengths of Closed Billiards on the Regular Pentagon -
dc.typeArticle-
dc.identifier.doi10.1093/imrn/rnaf227-
dc.identifier.scopuseid_2-s2.0-105011874996-
dc.identifier.volume2025-
dc.identifier.issue15-
dc.identifier.eissn1687-0247-
dc.identifier.issnl1073-7928-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats